89 resultados para boron nitride nanosheets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study has been made of the growth of both hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiN) by electron cyclotron resonance plasma enhanced chemical vapour deposition (ECR-PECVD). In the case of a-SiN, helium and nitrogen gas is injected into the system such that it passes through the resonance zone. These highly ionised gases provide sufficient energy to ionise the silane gas, which is injected further downstream. It is demonstrated that a gas phase reaction occurs between the silane and nitrogen species. It is control of the ratio of silane to nitrogen in the plasma which is critical for the production of stoichiometric a-SiN. Material has been produced at 80°C with a Si:N ratio of 1:1.3 a breakdown strength of ∼6 MV cm-1 and resistivity of > 1014 Ω cm. In the case of a-Si:H, helium and hydrogen gas is injected into the ECR zone and silane is injected downstream. It is shown that control of the gas phase reactions is critical in this process also. a-Si:H has been deposited at 80 °C with a dark conductivity of 10-11 Ω-1 cm-1 and a photosensitivity of justbelowl 4×104. Such materials are suitable for use in thin film transistors on plastic substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the effect of introducing nitrogen into different carbon networks. Two kinds of carbon nitride films were deposited: (a) Using a DC-magnetron sputtering system sp2 bonded carbon nitride (a-CN) films were deposited and (b) Using a combination of filtered cathodic vacuum arc and a low-pressure N2 plasma source, N was introduced into sp3 carbon networks (ta-C), leading to the formation of a more dense CN film named ta-CN. For ta-CN films we found that the optical gap initially decreases as the N content and the sp2 fraction rises, but above a certain N quantity there is a level-off of the value, and the gap then remains constant despite further increases in the fraction and clustering of the sp2 phase. However, for a-CN films the optical gap increases with the nitrogen content. These two different trends are not easily explained using the same framework as that for carbon films, in which any decrease in the band gap is associated to an increase in the sp2 fraction or its clustering. Here we discuss the conditions that lead to high optical gap in sp2-bonded carbon nitride samples, which are clearly not associated to the presence of any crystalline super-hard phase. We also compared other differences in properties observed between the two films, such as deposition rate, infrared and Raman spectra. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N 2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N 2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N 2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct formation of large-area carbon thin films on gallium nitride by chemical vapor deposition without metallic catalysts is demonstrated. A high flow of ammonia is used to stabilize the surface of the GaN (0001)/sapphire substrate during the deposition at 950°C. Various characterization methods verify that the synthesized thin films are largely sp 2 bonded, macroscopically uniform, and electrically conducting. The carbon thin films possess optical transparencies comparable to that of exfoliated graphene. This paper offers a viable route toward the use of carbon-based materials for future transparent electrodes in III-nitride optoelectronics, such as GaN-based light emitting diodes and laser diodes. © 1988-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the thermal evolution of end-of-range (EOR) defects in germanium and their impact on junction thermal stability. After solid-phase epitaxial regrowth of a preamorphized germanium layer, EOR defects exhibiting dislocation loop-like contrast behavior are present. These defects disappear during thermal annealing at 400 °C, while boron electrical deactivation occurs. After the whole defect population vanishes, boron reactivation is observed. These results indicate that germanium self-interstitials, released by EOR defects, are the cause of B deactivation. Unlike in Si, the whole deactivation/reactivation cycle in Ge is found to take place while the maximum active B concentration exceeds its solubility limit. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: