70 resultados para aggregation functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kolmogorov's two-thirds, ((Δv) 2) ∼ e 2/ 3r 2/ 3, and five-thirds, E ∼ e 2/ 3k -5/ 3, laws are formally equivalent in the limit of vanishing viscosity, v → 0. However, for most Reynolds numbers encountered in laboratory scale experiments, or numerical simulations, it is invariably easier to observe the five-thirds law. By creating artificial fields of isotropic turbulence composed of a random sea of Gaussian eddies whose size and energy distribution can be controlled, we show why this is the case. The energy of eddies of scale, s, is shown to vary as s 2/ 3, in accordance with Kolmogorov's 1941 law, and we vary the range of scales, γ = s max/s min, in any one realisation from γ = 25 to γ = 800. This is equivalent to varying the Reynolds number in an experiment from R λ = 60 to R λ = 600. While there is some evidence of a five-thirds law for g > 50 (R λ > 100), the two-thirds law only starts to become apparent when g approaches 200 (R λ ∼ 240). The reason for this discrepancy is that the second-order structure function is a poor filter, mixing information about energy and enstrophy, and from scales larger and smaller than r. In particular, in the inertial range, ((Δv) 2) takes the form of a mixed power-law, a 1+a 2r 2+a 3r 2/ 3, where a 2r 2 tracks the variation in enstrophy and a 3r 2/ 3 the variation in energy. These findings are shown to be consistent with experimental data where the polution of the r 2/ 3 law by the enstrophy contribution, a 2r 2, is clearly evident. We show that higherorder structure functions (of even order) suffer from a similar deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the performance and manner of functioning of existing products is at the base of new product development activities. In engineering design the term function is generally used to refer to the technical actions performed by a product. However, products accomplish a wider range of goals. This research explores the opportunity to describe and model, through the concept of function, product actions across four dimensions including technical, aesthetic, social and economic. The research demonstrates that non-technical functions can be represented through active verbs and nouns and modelled using a method known as the Function Analysis Diagram (FAD). The research argues that when technical, aesthetic, social and economic perspectives on product development are considered as different types of function, stakeholders have a common language to communicate which can benefit design collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced 700V Smart Trench IGBT with monolithically integrated over-voltage and over-current protecting circuits is presented in this paper. The proposed Smart IGBT comprises a sense IGBT, a low voltage lateral n-channel MOSFET (M 1), an avalanche diode (D av), and poly-crystalline Zener diodes (ZD) and resistor (R poly). Mix-mode transient simulations with MEDICI have proven the functionalities of the protecting circuits when the device is operating under abnormal conditions, such as Unclamped Inductive Switching (UIS) and Short Circuit (SC) condition. A Trench IGBT process is used to fabricate this device with total 11 masks including one metal mask only. The characterizations of the fabricated device exhibit the clamping capability of the avalanche diode and voltage pull-down ability of the MOSFET. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic forces play a key role in mediating interactions between proteins. However, gaining quantitative insights into the complex effects of electrostatics on protein behavior has proved challenging, due to the wide palette of scenarios through which both cations and anions can interact with polypeptide molecules in a specific manner or can result in screening in solution. In this article, we have used a variety of biophysical methods to probe the steady-state kinetics of fibrillar protein self-assembly in a highly quantitative manner to detect how it is modulated by changes in solution ionic strength. Due to the exponential modulation of the reaction rate by electrostatic forces, this reaction represents an exquisitely sensitive probe of these effects in protein-protein interactions. Our approach, which involves a combination of experimental kinetic measurements and theoretical analysis, reveals a hierarchy of electrostatic effects that control protein aggregation. Furthermore, our results provide a highly sensitive method for the estimation of the magnitude of binding of a variety of ions to protein molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper generalizes recent Lyapunov constructions for a cascade of two nonlinear systems, one of which is stable rather than asymptotically stable. A new cross-term construction in the Lyapunov function allows us to replace earlier growth conditions by a necessary boundedness condition. This method is instrumental in the global stabilization of feedforward systems, and new stabilization results are derived from the generalized construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new version of the Multi-objective Alliance Algorithm (MOAA) is described. The MOAA's performance is compared with that of NSGA-II using the epsilon and hypervolume indicators to evaluate the results. The benchmark functions chosen for the comparison are from the ZDT and DTLZ families and the main classical multi-objective (MO) problems. The results show that the new MOAA version is able to outperform NSGA-II on almost all the problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel information-theoretic approach for Bayesian optimization called Predictive Entropy Search (PES). At each iteration, PES selects the next evaluation point that maximizes the expected information gained with respect to the global maximum. PES codifies this intractable acquisition function in terms of the expected reduction in the differential entropy of the predictive distribution. This reformulation allows PES to obtain approximations that are both more accurate and efficient than other alternatives such as Entropy Search (ES). Furthermore, PES can easily perform a fully Bayesian treatment of the model hyperparameters while ES cannot. We evaluate PES in both synthetic and real-world applications, including optimization problems in machine learning, finance, biotechnology, and robotics. We show that the increased accuracy of PES leads to significant gains in optimization performance.