84 resultados para ZINC LOAD
Resumo:
Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2×2 pile groups with bending and geometric properties similar to real 0.5m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group, London.
Resumo:
A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.
Resumo:
Highly c-axis oriented ZnO films have been deposited at room temperature with high rates (∼50 nm·min -1) using an innovative remote plasma sputtering configuration, which allows independent control of the plasma density and the sputtering ion energy. The ZnO films deposited possess excellent crystallographic orientation, high resistivity (>10 9 Ω·m), and exhibit very low surface roughness. The ability to increase the sputtering ion energy without causing unwanted Ar + bombardment onto the substrate has been shown to be crucial for the growth of films with excellent c-axis orientation without the need of substrate heating. In addition, the elimination of the Ar + bombardment has facilitated the growth of films with very low defect density and hence very low intrinsic stress (100 MPa for 3 μm-thick films). This is over an order of magnitude lower than films grown with a standard magnetron sputtering system. © 2012 American Institute of Physics.
Resumo:
Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.
Resumo:
The philosophical aspects of applying the principles of biomimicry are explored in a case study of structural design. Integrating structural engineering with services engineering can be regarded, to some extent, as taking principles from biological systems and applying them to large-scale conceptual design. The end-product discussed herein a so-called load-bearing duct, a functional naturally ventilated multi-storey office building that takes the applied loading efficiently both structurally and cost-effectively giving it the potential to be sustainable throughout its design life.
Resumo:
A catalyst-free synthesis of ZnO nanostructures using platinum microheaters under ambient environmental conditions has been developed. Different types of ZnO nanostructures are synthesized from the oxidization of Zn thin film by local heating. The characterization of two shapes of Pt microheaters is investigated and the relationship between the applied power for heat generation and ZnO nanostructure synthesis is investigated by local heating experiments under ambient conditions. Based on the developed heating approach, synthesis area, location, and morphologies of ZnO nanostructures can be controlled through the deposited thickness of Zn layer and applied heating voltages. Furthermore, a connected multiple-structure (Zn-ZnO-Zn) layer is synthesized using combinative multimicroheaters. © 2002-2012 IEEE.
Resumo:
The paper reports on the in-situ growth of zinc oxide nanowires (ZnONWs) on a complementary metal oxide semiconductor (CMOS) substrate, and their performance as a sensing element for ppm (parts per million) levels of toluene vapour in 3000 ppm humid air. Zinc oxide NWs were grown using a low temperature (only 90°C) hydrothermal method. The ZnONWs were first characterised both electrically and through scanning electron microscopy. Then the response of the on-chip ZnONWs to different concentrations of toluene (400-2600ppm) was observed in air at 300°C. Finally, their gas sensitivity was determined and found to lie between 0.1% and 0.3% per ppm. © 2013 IEEE.
Resumo:
In this paper, we demonstrate an approach for the local synthesis of ZnO nanowires (ZnO NWs) and the potential for such structures to be incorporated into device applications. Three network ZnO NW devices are fabricated on a chip by using a bottom-up synthesis approach. Microheaters (defined by standard semiconductor processing) are used to synthesize the ZnO NWs under a zinc nitrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA, (CH2)6·N4) solution. By controlling synthesis parameters, varying densities of networked ZnO NWs are locally synthesized on the chip. The fabricated networked ZnO NW devices are then characterized using UV excitation and cyclic voltammetry (CV) experiments to measure their photoresponse and electrochemical properties. The experimental results show that the techniques and material systems presented here have the potential to address interesting device applications using fabrication methods that are fully compatible with standard semiconductor processing. © 2013 IEEE.
Resumo:
The failure mode of axially loaded simple, single lap joints formed between thin adherends which are flexible in bending is conventionally described as one of axial peeling. We have observed - using high-speed photography - that it is also possible for failure to be preceded by the separation front, or crack, moving in a transverse direction, i.e. perpendicular to the direction of the axial load. A simple energy balance analysis suggests that the critical load for transverse failure is the same as that for axial separation for both flexible lap joints, where the bulk of the stored elastic energy lies in the adhesive, and structural lap joints in which the energy stored in the adherends dominates. The initiation of the failure is dependent on a local increases in either stress or strain energy to some critical values. In the case of a flexible joint, this will occur within the adhesive layer and the critical site will be close to one of the corners of the joint overlap from which the separation front can proceed either axially or transversely. These conclusions are supported by a finite element analysis of a joint formed between adherends of finite width by a low modulus adhesive. © 2012 Taylor & Francis.
Resumo:
It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation. © 2013 AIP Publishing LLC.
Resumo:
The objective of this study was to examine the operating characteristics of a light duty multi cylinder compression ignition engine with regular gasoline fuel at low engine speed and load. The effects of fuel stratification by means of multiple injections as well as the sensitivity of auto-ignition and burn rate to intake pressure and temperature are presented. The measurements used in this study included gaseous emissions, filter smoke opacity and in-cylinder indicated information. It was found that stable, low emission operation was possible with raised intake manifold pressure and temperature, and that fuel stratification can lead to an increase in stability and a reduced reliance on increased temperature and pressure. It was also found that the auto-ignition delay sensitivity of gasoline to intake temperature and pressure was low within the operating window considered in this study. Nevertheless, the requirement for an increase of pressure, temperature and stratification in order to achieve auto-ignition time scales small enough for combustion in the engine was clear, using pump gasoline. Copyright © 2009 SAE International.