132 resultados para Velvet Underground


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibration response of piled foundations due to ground-borne vibration produced by an underground railway is a largely-neglected area in the field of structural dynamics. However, this continues to be an important aspect of research as it is expected that the presence of piled foundations can have a significant influence on the propagation and transmission of the wavefield produced by the underground railway. This paper presents a comparison of two methods that can be employed in calculating the vibration response of a piled foundation: an efficient semi-analytical model, and a Boundary Element model. The semi-analytical model uses a column or an Euler beam to model the pile, and the soil is modelled as a linear, elastic continuum that has the geometry of a thick-walled cylinder with an infinite outer radius and an inner radius equal to the radius of the pile. The boundary element model uses a constant-element BEM formulation for the halfspace, and a rectangular discretisation of the circular pile-soil interface. The piles are modelled as Timoshenko beams. Pile-soil-pile interactions are inherently accounted for in the BEM equations, whereas in the semi-analytical model these are quantified using the superposition of interaction factors. Both models use the method of joining subsystems to incorporate the incident wavefield generated by the underground railway into the pile model. Results are computed for a single pile subject to an inertial loading, pile-soil-pile interactions, and a pile group subjected to excitation from an underground railway. The two models are compared in terms of accuracy, computation time, versatility and applicability, and guidelines for future vibration prediction models involving piled foundations are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground vibration due to underground railways is a significant source of disturbance for people living or working near subways. Numerical models are commonly used to predict vibration levels; however, uncertainty inherent to these simulations must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of uncertainty in soil material properties on the surface vibration of layered halfspaces excited by an underground railway. The half-space is simulated using the thin-layer method coupled with the pipe-in-pipe (PiP) method for determining the load on the buried tunnel. The K-L expansion method is employed to smoothly vary the material properties throughout the soil by up to 10%. The simulation predicts a surface rms velocity variation of 5-10dB compared to a homogeneous, layered halfspace. These results suggest it may be prudent to include a 5dB error band on predicted vibration levels when simulating areas of varied material properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Such uplift response of the buoyant structure is influenced by the soil it is buried in. In the case of a liquefiable soil deposit, the soil can lose its shear strength significantly in the event of an earthquake. If the soil liquefies fully, the buoyant structure can float towards the soil surface. However, a partly liquefied soil deposit retains some of its initial shear strength and resists the uplift. This paper discusses the different soil conditions and their influence on the uplift response of buoyant structures. © 2012 World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. This inherent buoyancy may cause lightweight structures to float when the soil liquefies. Centrifuge tests have been carried out to study the excess pore pressure generation and dissipation in liquefiable soils. In these tests, near full liquefaction conditions were attained within a few cycles of the earthquake loading. In the case of high hydraulic conductivity sands, significant dissipation could take place even during the earthquake loading which inhibits full liquefaction from occurring. In the case of excess pore pressure generation and dissipation around a floating structure, the cyclic response of the structure may lead to the reduction in excess pore pressure near the face of the structure as compared to the far field. This reduction in excess pore pressure is due to shear-induced dilation and suction pressures arising from extensile stresses at the soil-structure interface. Given the lower excess pore pressure around the structure; the soil around the structure retains a portion of this shear strength which in turn can discourage significant uplift of the underground structure. Copyright © 2012, IGI Global.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Centrifuge tests have been carried out to assess the effectiveness of existing remediation techniques in reducing the uplift of underground structures, namely in situ densification and the use of coarse sand backfill. The centrifuge test results showed that these methods do reduce the uplift displacement of buoyant structures. Their performance was thereafter linked to the theoretical mechanism of floatation of underground structures. Based on the understanding from preceding tests, a further improvement on the use of the coarse sand backfill was carried out, which produced a greater reduction in the uplift displacement of the structure. Each of these techniques, however, does pose issues when applied in the field, such as possible damage to surrounding structures, construction issues and maintenance problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a three-dimensional comprehensive model for the calculation of vibration in a building based on pile-foundation due to moving trains in a nearby underground tunnel. The model calculates the Power Spectral Density (PSD) of the building's responses due to trains moving on floating-slab tracks with random roughness. The tunnel and its surrounding soil are modelled as a cylindrical shell embedded in half-space using the well-known PiP model. The building and its piles are modelled as a 2D frame using the dynamic stiffness matrix. Coupling between the foundation and the ground is performed using the theory of joining subsystems in the frequency domain. The latter requires calculations of transfer functions of a half-space model. A convenient choice based on the thin-layer method is selected in this work for the calculations of responses in a half-space due to circular strip loadings. The coupling considers the influence of the building's dynamics on the incident wave field from the tunnel, but ignores any reflections of building's waves from the tunnel. The derivation made in the paper shows that the incident vibration field at the building's foundation gets modified by a term reflecting the coupling and the dynamics of the building and its foundation. The comparisons presented in the paper show that the dynamics of the building and its foundation significantly change the incident vibration field from the tunnel and they can lead to loss of accuracy of predictions if not considered in the calculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology operate primarily in the 2.4 GHz globally compatible ISM band. However, the wireless propagation channel in this crowded band is notoriously variable and unpredictable, and it has a significant impact on the coverage range and quality of the radio links between the wireless nodes. Therefore, the use of Frequency Diversity (FD) has potential to ameliorate this situation. In this paper, the possible benefits of using FD in a tunnel environment have been quantified by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor motes in the disused Aldwych underground railway tunnel. The objective of this investigation is to characterise the performance of FD in this confined environment. Cross correlation coefficients are calculated from samples of the received power on a number of frequency channels gathered during the field measurements. The low measured values of the cross correlation coefficients indicate that applying FD at 2.4 GHz will improve link performance in a WSN deployed in a tunnel. This finding closely matches results obtained by running a computational simulation of the tunnel radio propagation using a 2D Finite-Difference Time-Domain (FDTD) method. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Node placement plays a significant role in the effective and successful deployment of Wireless Sensor Networks (WSNs), i.e., meeting design goals such as cost effectiveness, coverage, connectivity, lifetime and data latency. In this paper, we propose a new strategy to assist in the placement of Relay Nodes (RNs) for a WSN monitoring underground tunnel infrastructure. By applying for the first time an accurate empirical mean path loss propagation model along with a well fitted fading distribution model specifically defined for the tunnel environment, we address the RN placement problem with guaranteed levels of radio link performance. The simulation results show that the choice of appropriate path loss model and fading distribution model for a typical environment is vital in the determination of the number and the positions of RNs. Furthermore, we adapt a two-tier clustering multi-hop framework in which the first tier of the RN placement is modelled as the minimum set cover problem, and the second tier placement is solved using the search-and-find algorithm. The implementation of the proposed scheme is evaluated by simulation, and it lays the foundations for further work in WSN planning for underground tunnel applications. © 2010 IEEE.