108 resultados para Uniaxial test
Resumo:
Predictions for a 75x205mm surface semi-elliptic defect in the NESC-1 spinning cylinder test have been made using BS PD 6493:1991, the R6 procedure, non-linear cracked body finite element analysis techniques and the local approach to fracture. All the techniques agree in predicting ductile tearing near the inner surface of the cylinder followed by cleavage initiation. However they differ in the amount of ductile tearing, and the exact location and time of any cleavage event. The amount of ductile tearing decreases with increasing sophistication in the analysis, due to the drop in peak crack driving force and more explicit consideration of constraint effects. The local approach predicts a high probability of cleavage in both HAZ and base material after 190s, while the other predictions suggest that cleavage is unlikely in the HAZ due to constraint loss, but likely in the underlying base material. The timing of this event varies from ∼150s for R6 predictions to ∼250-300s using non-linear cracked body analysis.
Resumo:
A novel optical switching matrix measuring 1×2 mm2 in size is fabricated. The switching matrix is composed of waveguides, four 1×4 multimode interference (MMI) splitters, 32 total internal refraction mirrors and four 4×1 MMI combiners with the extremely compact size of 1×2 mm2. This integrated device are assessed and loss contribution measured from test structure is presented.
Resumo:
This paper uses finite element (FE) analysis to examine the residual stresses generated during the TIG welding of aluminium aerospace alloys. It also looks at whether such an approach could be useful for evaluating the effectiveness of various residual stress control techniques. However, such simulations cannot be founded in a vacuum. They require accurate measurements to refine and validate them. The unique aspect of this work is that two powerful engineering techniques are combined: FE modelling and neutron diffraction. Weld trials were performed and the direct measurement of residual strain made using the ENGIN neutron diffraction strain scanning facility. The predicted results show an excellent agreement with experimental values. Finally this model is used to simulate a weld made using a "Low Stress No Distortion" (LSND) technique. Although the stress reduction predicted is only moderate, the study suggests the approach to be a quick and efficient means of optimising such techniques.
Resumo:
Transient test facilities offer the potential for the simultaneous study of turbine aerodynamic performance, unsteady flow phenomena and the heat transfer characteristics of a turbine stage. This paper describes the development of aerodynamic performance measurement techniques in the Oxford Rotor Facility (ORF). The solutions to the technological issues involved with transient testing presented in this paper are expected to achieve levels of precision uncertainty comparable with traditional steady flow test rigs. The theoretical background to the measurement of aerodynamic performance is presented together with a comprehensive pre-test uncertainty analysis. The instrumentation scheme for the measurement of stage mass flow rate is discussed in detail, the measurements of shaft power, total inlet enthalpy, and stage pressure ratio are also outlined. The current working section features a 62% scale, 1-1/2 stage, high-pressure shroudless transonic turbine. The required inlet flow conditions are provided by an Isentropic Light Piston Tunnel (ILPT) with a quasi-steady state run time of approximately 70ms. The testing is conducted at engine representative specific speed, pressure ratio, gas-to-wall temperature ratio, Mach number and Reynolds number.
Resumo:
Two shock-capturing methods are considered. One is based on a standard conservative Roe scheme with van Leer's MUSCL variable extrapolation method applied to characteristic variables and a Runge-Kutta time stepping scheme. The other is based on the novel CABARET space-time scheme, which uses two sets of staggered variables, one for the conservation step and the other for characteristic splitting into local Riemann invariants. The methods are compared in a range of 2-D inviscid compressible flow test cases. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Energy Piles present an efficient solution for long-term carbon emission reduction and sustainable construction. However, they have received only partial acceptance by the industry, because of concerns regarding the impact of cyclic thermal changes on the serviceability of energy pile foundations. This paper investigates the applicability of the hybrid load transfer approach to load-settlement analysis of single piles behavior during thermal energy exchange processes. Back-analysis results in terms of the thermal and mechanical response of energy piles show good agreement with field test results from Lambeth College in London. © ASCE 2011.