110 resultados para ULTRAFAST DECAY
Resumo:
We report the generation of 420 fs pulses of 1.56 μm light from a mode-locked ultrafast laser inscribed Er-doped waveguide laser. Passive mode-locking was achieved using a carbon nanotube saturable absorber. © 2010 Optical Society of America.
Resumo:
We exfoliate graphite in both aqueous and non-aqueous environments through mild sonication followed by centrifugation. The dispersions are enriched with monolayers. We mix them with polymers, followed by slow evaporation to produce optical quality composites. Nonlinear optical measurements show similar to 5% saturable absorption. The composites are then integrated into fiber laser cavities to generate 630 fs pulses at 1.56 mu m. This shows the viability of solution phase processing for graphene based photonic devices. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
A Graphene-based saturable absorber is fabricated using wet chemistry techniques. We use it to passively mode-lock an Erbium doped fiber laser. ~500fs pulses are produced at 1560nm with a 5.2nm spectrum bandwidth. © 2010 Optical Society of America.
Resumo:
The fabrication of high frequency acoustic wave devices requires thedevelopment of thin films of piezoelectric materials with improved morphologicaland electro-acoustical properties. In particular, the crystalline orientationof the films, surface morphology, film stress and electrical resistivity are keyissues for the piezoelectric response. In the work reported here, ZnO thinfilms were deposited at high rates (>50 nm/min) using a novel process knownas the High Target Utilisation Sputtering (HiTUS). The films deposited possessexcellent crystallographic orientation, high resistivity (>109ωm), and exhibit surface roughness and film stress one order of magnitudelower than films grown with standard magnetron sputtering. The electromechanicalcoupling coefficient of the films, kT, was precisely calculated byimplementing the resonant spectrum method, and was found to be at least 6%higher than any previously reported kT of magnetron sputtered filmsto the Authors' knowledge. The low film stress of the film is deemed as one ofthe most important factors responsible for the high k T valueobtained. © 2010 IEEE.
Resumo:
Model tests for global design verification of deepwater floating structures cannot be made at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation techniques. In such a method the upper sections of each line are modelled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model, that aims to simulate the remainder of the line. The rationale for this is that in deep water the transverse elastic waves of a line are likely to decay before they are reflected at the seabed. The focus of this paper is the verification of this rationale and the ongoing work, which is considering ways to produce a truncation model. Transverse dynamics of a mooring line are modelled using the equations of motion of an inextensible taut string, submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. Nonlinear hydrodynamic damping is included; bending and VIV effects are neglected. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it is very useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. Initial efforts in developing a truncated model show that a linearized numerical solution in the frequency domain matches very closely the exact benchmark. Copyright © 2011 by ASME.