71 resultados para Symmetric Group


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled Monte Carlo depletion systems provide a versatile and an accurate tool for analyzing advanced thermal and fast reactor designs for a variety of fuel compositions and geometries. The main drawback of Monte Carlo-based systems is a long calculation time imposing significant restrictions on the complexity and amount of design-oriented calculations. This paper presents an alternative approach to interfacing the Monte Carlo and depletion modules aimed at addressing this problem. The main idea is to calculate the one-group cross sections for all relevant isotopes required by the depletion module in a separate module external to Monte Carlo calculations. Thus, the Monte Carlo module will produce the criticality and neutron spectrum only, without tallying of the individual isotope reaction rates. The onegroup cross section for all isotopes will be generated in a separate module by collapsing a universal multigroup (MG) cross-section library using the Monte Carlo calculated flux. Here, the term "universal" means that a single MG cross-section set will be applicable for all reactor systems and is independent of reactor characteristics such as a neutron spectrum; fuel composition; and fuel cell, assembly, and core geometries. This approach was originally proposed by Haeck et al. and implemented in the ALEPH code. Implementation of the proposed approach to Monte Carlo burnup interfacing was carried out through the BGCORE system. One-group cross sections generated by the BGCORE system were compared with those tallied directly by the MCNP code. Analysis of this comparison was carried out and led to the conclusion that in order to achieve the accuracy required for a reliable core and fuel cycle analysis, accounting for the background cross section (σ0) in the unresolved resonance energy region is essential. An extension of the one-group cross-section generation model was implemented and tested by tabulating and interpolating by a simplified σ0 model. A significant improvement of the one-group cross-section accuracy was demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the Serpent Monte Carlo code was used as a tool for preparation of homogenized few-group cross sections for the nodal diffusion analysis of Sodium cooled Fast Reactor (SFR) cores. Few-group constants for two reference SFR cores were generated by Serpent and then employed by nodal diffusion code DYN3D in 2D full core calculations. The DYN3D results were verified against the references full core Serpent Monte Carlo solutions. A good agreement between the reference Monte Carlo and nodal diffusion results was observed demonstrating the feasibility of using Serpent for generation of few-group constants for the deterministic SFR analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MIMO DSP is employed to improve the performance of degenerate mode-group division multiplexing in 8 km of conventional GI-MMF. Compensation of the mode coupling, induced by the launch and propagation, between and inside each degenerate mode-group is investigated in order to reduce the DSP complexity. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each mode of a multimode fibre is excited using binary phase patterns on a Spatial Light Modulator and verified by observation of the near-field leaving the fibre and analysis of the step response. © 2011 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific fibre modes are deliberately excited in a few-mode and multimode fibre using holography. The same system is also used to demonstrate holography's ability to detect and route individual fibre modes. © OSA/OFC/NFOEC 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A symmetry-extended mobility rule is formulated for body-hinge frameworks and used to derive necessary symmetry conditions for isostatic (statically and kinematically indeterminate) frameworks. Constructions for symmetric body-hinge frameworks with an isostatic scalar count are reported, and symmetry counts are used to examine these structures for hidden, symmetry-detectable mechanisms. Frameworks of this type may serve as examples for exploration of a symmetry extension of the (now proven) 'molecular conjecture'. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, mode group division multiplexing is achieved in a multimode fiber link using a 2-D Hermite-Gaussian mode launch. 20 Gb/s error-free transmission is achieved over a 250 m worst-case OM1 multimode fiber link. © OSA 2014.