91 resultados para Retrospective Forecast Test
Resumo:
Energy Piles present an efficient solution for long-term carbon emission reduction and sustainable construction. However, they have received only partial acceptance by the industry, because of concerns regarding the impact of cyclic thermal changes on the serviceability of energy pile foundations. This paper investigates the applicability of the hybrid load transfer approach to load-settlement analysis of single piles behavior during thermal energy exchange processes. Back-analysis results in terms of the thermal and mechanical response of energy piles show good agreement with field test results from Lambeth College in London. © ASCE 2011.
Resumo:
A host of methods and tools to support designing are being developed in Cambridge EDC. These range from tools for design management to those for the generation and selection of design ideas, layouts, materials and production processes. A project, to develop a device to improve arm mobility of muscular dystrophy sufferers, is undertaken as a test-bed to evaluate and improve these methods and tools as well as to observe and modify its design and management processes. This paper presents the difficulties and advantages of using design methods and tools within this rehabilitation design context, with special focus on the evolution of the designs, tools, and management processes.
Settlement of Arctic submarine pipelines: theoretical considerations and physical model test results
Resumo:
Biological sensing is explored through novel stable colloidal dispersions of pyrrole-benzophenone and pyrrole copolymerized silica (PPy-SiO(2)-PPyBPh) nanocomposites, which allow covalent linking of biological molecules through light mediation. The mechanism of nanocomposite attachment to a model protein is studied by gold labeled cholera toxin B (CTB) to enhance the contrast in electron microscopy imaging. The biological test itself is carried out without gold labeling, i.e., using CTB only. The protein is shown to be covalently bound through the benzophenone groups. When the reactive PPy-SiO(2)-PPyBPh-CTB nanocomposite is exposed to specific recognition anti-CTB immunoglobulins, a qualitative visual agglutination assay occurs spontaneously, producing as a positive test, PPy-SiO(2)-PPyBPh-CTB-anti-CTB, in less than 1 h, while the control solution of the PPy-SiO(2)-PPyBPh-CTB alone remained well-dispersed during the same period. These dispersions were characterized by cryogenic transmission microscopy (cryo-TEM), scanning electron microscopy (SEM), FTIR and X-ray photoelectron spectroscopy (XPS).
Resumo:
Optimisation of cooling systems within gas turbine engines is of great interest to engine manufacturers seeking gains in performance, efficiency and component life. The effectiveness of coolant delivery is governed by complex flows within the stator wells and the interaction of main annulus and cooling air in the vicinity of the rim seals. This paper reports the development of a test facility which allows the interaction of cooling air and main gas paths to be measured at conditions representative of those found in modern gas turbine engines. The test facility features a two stage turbine with an overall pressure ratio of approximately 2.6:1. Hot air is supplied to the main annulus using a Rolls-Royce Dart compressor driven by an aero-derivative engine plant. Cooling air can be delivered to the stator wells at multiple locations and at a range of flow rates which cover bulk ingestion through to bulk egress. The facility has been designed with adaptable geometry to enable rapid changes of cooling air path configuration. The coolant delivery system allows swift and accurate changes to the flow settings such that thermal transients may be performed. Particular attention has been focused on obtaining high accuracy data, using a radio telemetry system, as well as thorough through-calibration practices. Temperature measurements can now be made on both rotating and stationary discs with a long term uncertainty in the region of 0.3 K. A gas concentration measurement system has also been developed to obtain direct measurement of re-ingestion and rim seal exchange flows. High resolution displacement sensors have been installed in order to measure hot running geometry. This paper documents the commissioning of a test facility which is unique in terms of rapid configuration changes, non-dimensional engine matching and the instrumentation density and resolution. Example data for each of the measurement systems is presented. This includes the effect of coolant flow rate on the metal temperatures within the upstream cavity of the turbine stator well, the axial displacement of the rotor assembly during a commissioning test, and the effect of coolant flow rate on mixing in the downstream cavity of the stator well. Copyright © 2010 by ASME.
Resumo:
This paper describes an experimental study of a new form of prestressed concrete beam. Aramid Fiber Reinforced Polymers (AFRPs) are used to provide compression confinement in the form of interlocking circular spirals, while external tendons are made from parallel-lay aramid ropes. The response shows that the confinement of the compression flange significantly increases the ductility of the beam, allowing much better utilization of the fiber strength. The failure of the beam is characterized by rupture of spiral confinement reinforcement.
Resumo:
A sensor for chemical species or biological species or radiation presenting to test fluid a polymer composition comprises polymer and conductive filler metal, alloy or reduced metal oxide and having a first level of electrical conductance when quiescent and being convertible to a second level of conductance by change of stress applied by stretching or compression or electric field, in which the polymer composition is characterised by at least one of the features in the form of particles at least 90% w/w held on a 100 mesh sieve; and/or comprising a permeable body extending across a channel of fluid flow; and/or affording in-and-out diffusion of test fluid and/or mechanically coupled to a workpiece of polymer swellable by a constituent of test fluid.
Resumo:
The Spoken Dialog Challenge 2010 was an exercise to investigate how different spoken dialog systems perform on the same task. The existing Let's Go Pittsburgh Bus Information System was used as a task and four teams provided systems that were first tested in controlled conditions with speech researchers as users. The three most stable systems were then deployed to real callers. This paper presents the results of the live tests, and compares them with the control test results. Results show considerable variation both between systems and between the control and live tests. Interestingly, relatively high task completion for controlled tests did not always predict relatively high task completion for live tests. Moreover, even though the systems were quite different in their designs, we saw very similar correlations between word error rate and task completion for all the systems. The dialog data collected is available to the research community. © 2011 Association for Computational Linguistics.