75 resultados para Residence characteristics
Resumo:
In this paper we report the development of 1.4 kV 25 A PT and NPT Trench IGBTs with ultra-low on-resistance, latch-up free operation and highly superior overall performance when compared to previously reported DMOS IGBTs in the same class. We have fabricated both PT and transparent anode NPT devices to cover a wide range of applications which require very low on-state losses or very fast time with ultra-low switching losses. The minimum forward voltage drop at the standard current density of 100A/cm2 was 1.1 V for PT non-irradiated devices and 2.1 V for 16 MRad PT irradiated devices. The non-irradiated transparent emitter NPT structure has a typical forward voltage drop of 2.2 V, a turn-off time below 100 ns and turn-off energy losses of 11.2 mW/cm2 at 125 C. The maximum controllable current density was in excess of 1000A/cm2.
Resumo:
We demonstrated a controllable tuning of the electronic characteristics of ZnO nanowire field effect transistors (FETs) using a high-energy proton beam. After a short proton irradiation time, the threshold voltage shifted to the negative gate bias direction with an increase in the electrical conductance, whereas the threshold voltage shifted to the positive gate bias direction with a decrease in the electrical conductance after a long proton irradiation time. The electrical characteristics of two different types of ZnO nanowires FET device structures in which the ZnO nanowires are placed on the substrate or suspended above the substrate and photoluminescence (PL) studies of the ZnO nanowires provide substantial evidence that the experimental observations result from the irradiation-induced charges in the bulk SiO(2) and at the SiO(2)/ZnO nanowire interface, which can be explained by a surface-band-bending model in terms of gate electric field modulation. Our study on the proton-irradiation-mediated functionalization can be potentially interesting not only for understanding the proton irradiation effects on nanoscale devices, but also for creating the property-tailored nanoscale devices.
Resumo:
In order to understand how the performance of a liquid-crystal laser depends on the physical properties of the low molar mass nematic host, we have studied the energy threshold and slope efficiency of ten optically pumped liquid-crystal lasers based on different hosts. Specifically, this leads to a variation in the birefringence, the orientational order parameter, and the order parameter of the transition dipole moment of the dye. It is found that low threshold energies and high slope efficiencies correlate with high order parameters and large birefringences. To a first approximation this can be understood by considering analytical expressions for the threshold and slope efficiency, which are derived from the space-independent rate equations for a two-level system, in terms of the macroscopic liquid crystal properties.
Resumo:
Tomographic particle image velocimetry measurements of homogeneous isotropic turbulence that have been made in a large mixing tank facility at Cambridge are analysed in order to characterize thin highly sheared regions that have been observed. The results indicate that such regions coincide with regions of high enstrophy, dissipation and stretching. Large velocity jumps are observed across the width of these regions. The thickness of the shear layers seems to scale with the Taylor microscale, as has been suggested previously. The results discussed here concentrate on examining individual realizations rather than statistics of these regions.
Resumo:
In this study we have fabricated eight different liquid-crystal lasers using the same gain medium but different homologues from the bimesogenic series alpha-(2',4-difluorobiphenyl-4'-yloxy)-omega-(4-cyanobiphenyl-4'-yloxy)alkanes, whereby the number of methylene units in the spacer chain varied from n=5 to n=12. To quantify the performance of these lasers, the threshold energy and the slope efficiency were extracted from the input-output characteristics of each laser. A clear odd-even effect was observed when both the excitation threshold and the slope efficiency were plotted as a function of the number of methylene units in the spacer chain. In all cases, the bimesogen lasers for which n is even exhibit lower threshold energies and higher slope efficiencies than those for which n is odd. These results are then interpreted in terms of the macroscopic physical properties of the liquid-crystalline compounds. In accordance with a previous study [S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, Phys. Rev. E. 74, 061709 (2006)], a combination of a large birefringence and high order parameters are found, in the most part, to correlate with low-threshold energy and high slope efficiency. This indicates that the threshold and slope efficiency are dominated by the host macroscopic properties as opposed to intermolecular interactions between the dye and the liquid crystal. However, certain differences in the slope efficiency could not be explained by the birefringence and order parameter values alone. Instead, we find that the slope efficiency is further increased by increasing the elastic constants of the liquid-crystal host so as to decrease the scattering losses incurred by local distortions in the director field under high-energy optical excitation.
Resumo:
Surface-architecture-controlled ZnO nanowires were grown using a vapor transport method on various ZnO buffer film coated c-plane sapphire substrates with or without Au catalysts. The ZnO nanowires that were grown showed two different types of geometric properties: corrugated ZnO nanowires having a relatively smaller diameter and a strong deep-level emission photoluminescence (PL) peak and smooth ZnO nanowires having a relatively larger diameter and a weak deep-level emission PL peak. The surface morphology and size-dependent tunable electronic transport properties of the ZnO nanowires were characterized using a nanowire field effect transistor (FET) device structure. The FETs made from smooth ZnO nanowires with a larger diameter exhibited negative threshold voltages, indicating n-channel depletion-mode behavior, whereas those made from corrugated ZnO nanowires with a smaller diameter had positive threshold voltages, indicating n-channel enhancement-mode behavior.
Resumo:
We discuss some fundamental characteristics of a phase-modulating device suitable to holographically project a monochrome video frame with 1280 x 720 resolution. The phase-modulating device is expected to be a liquid crystal over silicon chip with silicon area similar to that of commercial devices. Its basic characteristics, such as number of pixels, bits per pixel, and pixel dimensions, are optimized in terms of image quality and optical efficiency. Estimates of the image quality are made from the noise levels and contrast, while efficiency is calculated by considering the beam apodization, device dead space, diffraction losses, and the sinc envelope.
Resumo:
We present electro-optic characteristics of a transparent nanophotonic device fabricated on quartz substrate based on multiwall carbon nanotubes and nematic liquid crystals (LCs). The nanotube electrodes spawn a Gaussian electric field to three dimensionally address the LC molecules. The electro-optic characteristics of the device were investigated to optimize the device performance and it was found that lower driving voltages were suitable for microlens array and phase modulation applications, while higher driving voltages with a holding voltage can be used for display-related applications.