122 resultados para Representational level


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the variation of the integrated density of states with conduction activation energy in hydrogenated amorphous silicon thin film transistors. Results are given for two different gate insulator layers, PECVD silicon oxide and thermally grown silicon dioxide. The different gate insulators produce transistors with very different initial transfer characteristics, but the variation of integrated density of states with conduction activation energy is shown to be similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a method of automatic pronunciation scoring for use in computer-assisted language learning (CALL) systems. The method utilizes a likelihood-based `Goodness of Pronunciation' (GOP) measure which is extended to include individual thresholds for each phone based on both averaged native confidence scores and on rejection statistics provided by human judges. Further improvements are obtained by incorporating models of the subject's native language and by augmenting the recognition networks to include expected pronunciation errors. The various GOP measures are assessed using a specially recorded database of non-native speakers which has been annotated to mark phone-level pronunciation errors. Since pronunciation assessment is highly subjective, a set of four performance measures has been designed, each of them measuring different aspects of how well computer-derived phone-level scores agree with human scores. These performance measures are used to cross-validate the reference annotations and to assess the basic GOP algorithm and its refinements. The experimental results suggest that a likelihood-based pronunciation scoring metric can achieve usable performance, especially after applying the various enhancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a computational method for the coupled simulation of a compressible flow interacting with a thin-shell structure undergoing large deformations. An Eulerian finite volume formulation is adopted for the fluid and a Lagrangian formulation based on subdivision finite elements is adopted for the shell response. The coupling between the fluid and the solid response is achieved via a novel approach based on level sets. The basic approach furnishes a general algorithm for coupling Lagrangian shell solvers with Cartesian grid based Eulerian fluid solvers. The efficiency and robustness of the proposed approach is demonstrated with a airbag deployment simulation. It bears emphasis that in the proposed approach the solid and the fluid components as well as their coupled interaction are considered in full detail and modeled with an equivalent level of fidelity without any oversimplifying assumptions or bias towards a particular physical aspect of the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long term goal of our work is to enable rapid prototyping design optimization to take place on geometries of arbitrary size in a spirit of a real time computer game. In recent papers we have reported the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver and post-processing all within a single piece of software - and all implemented in parallel with commodity PC clusters as the target. This work has shown that it is possible to eliminate all serial bottlenecks from the CED Process. This paper reports further progress towards our goal; in particular we report on the generation of viscous layer meshes to bridge the body to the flow across the cut-cells. The Level Set formulation, which underpins the geometry representation, is used as a natural mechanism to allow rapid construction of conformal layer meshes. The guiding principle is to construct the mesh which most closely approximates the body but remains solvable. This apparently novel approach is described and examples given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The background to this review paper is research we have performed over recent years aimed at developing a simulation system capable of handling large scale, real world applications implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the use of a Level Set solid modeling geometry kernel within this parallel framework to enable automated design optimization without topological restrictions and on geometries of arbitrary complexity. Also described is another interesting application of Level Sets: their use in guiding the export of a body-conformal mesh from our basic cut-Cartesian background octree - mesh - this permits third party flow solvers to be deployed. As a practical demonstrations meshes of guaranteed quality are generated and flow-solved for a B747 in full landing configuration and an automated optimization is performed on a cooled turbine tip geometry. Copyright © 2009 by W.N.Dawes.