90 resultados para Radio equipment.
Resumo:
We demonstrate a record 150km transmission of microwave signals by a directly-modulated radio-over-fiber link with a bit-error-rate of less than 10-12. Cascaded semiconductor optical amplifiers are employed in this link to extend the transmission link length. © 2005 Optical Society of America.
Resumo:
The effect of antenna separation in a 3×3 MIMO system using RoF DAS technology is investigated. Larger antenna separation is found to improve the throughput due to reduced channel correlation and improved SNR. © 2011 Optical Society of America.
Resumo:
An integrated EOM VCSELs is shown to offer high linearity (92dB/Hz 2/3 at 6GHz) and by extrapolation ∼90dB/Hz2/3 up to 20GHz. Successful modulation with IEEE 802.11g signals is demonstrated at 6GHz with a 12dB dynamic range. © 2011 Optical Society of America.
Resumo:
This paper describes work on radio over fiber distributed antenna systems for improving the quality of radio coverage for in-building applications. The DAS network has also been shown to provide improved detection for Gen 2 UHF RFID tags. Using pre-distortion to reduce the problem of the RFID second harmonic, a simple heterogeneous sensing and communications system is demonstrated. © 2011 NOrthumbria University.
Resumo:
RoFSO links are found to be susceptible to high-order laser distortion making conventional SFDR ineffective as a performance indicator. For the first time, peak input power is demonstrated as a service-independent bound on dynamic range. © 2011 OSA.
Resumo:
This paper develops a modelling technique for equipment load panels which directly produces (adequate) models of the underlying dynamics on which to base robust controller design/evaluations. This technique is based on the use of the Lagrange's equations of motion and the resulting models are verified against those produced by a finite Element Method Model.
Resumo:
Tracking of project related entities such as construction equipment, materials, and personnel is used to calculate productivity, detect travel path conflicts, enhance the safety on the site, and monitor the project. Radio frequency tracking technologies (Wi-Fi, RFID, UWB) and GPS are commonly used for this purpose. However, on large-scale sites, deploying, maintaining and removing such systems can be costly and time-consuming. In addition, privacy issues with personnel tracking often limits the usability of these technologies on construction sites. This paper presents a vision based tracking framework that holds promise to address these limitations. The framework uses videos from a set of two or more static cameras placed on construction sites. In each camera view, the framework identifies and tracks construction entities providing 2D image coordinates across frames. Combining the 2D coordinates based on the installed camera system (the distance between the cameras and the view angles of them), 3D coordinates are calculated at each frame. The results of each step are presented to illustrate the feasibility of the framework.