81 resultados para Radial Homotheticity
Resumo:
Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone "sandwiched" between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.
Resumo:
BGCore reactor analysis system was recently developed at Ben-Gurion University for calculating in-core fuel composition and spent fuel emissions following discharge. It couples the Monte Carlo transport code MCNP with an independently developed burnup and decay module SARAF. Most of the existing MCNP based depletion codes (e.g. MOCUP, Monteburns, MCODE) tally directly the one-group fluxes and reaction rates in order to prepare one-group cross sections necessary for the fuel depletion analysis. BGCore, on the other hand, uses a multi-group (MG) approach for generation of one group cross-sections. This coupling approach significantly reduces the code execution time without compromising the accuracy of the results. Substantial reduction in the BGCore code execution time allows consideration of problems with much higher degree of complexity, such as introduction of thermal hydraulic (TH) feedback into the calculation scheme. Recently, a simplified TH feedback module, THERMO, was developed and integrated into the BGCore system. To demonstrate the capabilities of the upgraded BGCore system, a coupled neutronic TH analysis of a full PWR core was performed. The BGCore results were compared with those of the state of the art 3D deterministic nodal diffusion code DYN3D (Grundmann et al.; 2000). Very good agreement in major core operational parameters including k-eff eigenvalue, axial and radial power profiles, and temperature distributions between the BGCore and DYN3D results was observed. This agreement confirms the consistency of the implementation of the TH feedback module. Although the upgraded BGCore system is capable of performing both, depletion and TH analyses, the calculations in this study were performed for the beginning of cycle state with pre-generated fuel compositions. © 2011 Published by Elsevier B.V.
Resumo:
Semiconductor nanowires have recently emerged as a new class of materials with significant potential to reveal new fundamental physics and to propel new applications in quantum electronic and optoelectronic devices. Semiconductor nanowires show exceptional promise as nanostructured materials for exploring physics in reduced dimensions and in complex geometries, as well as in one-dimensional nanowire devices. They are compatible with existing semiconductor technologies and can be tailored into unique axial and radial heterostructures. In this contribution we review the recent efforts of our international collaboration which have resulted in significant advances in the growth of exceptionally high quality IIIV nanowires and nanowire heterostructures, and major developments in understanding the electronic energy landscapes of these nanowires and the dynamics of carriers in these nanowires using photoluminescence, time-resolved photoluminescence and terahertz conductivity spectroscopy. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate vertically aligned epitaxial GaAs nanowires of excellent crystallographic quality and optimal shape, grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. This is achieved by a two-temperature growth procedure, consisting of a brief initial high-temperature growth step followed by prolonged growth at a lower temperature. The initial high-temperature step is essential for obtaining straight, vertically aligned epitaxial nanowires on the (111)B GaAs substrate. The lower temperature employed for subsequent growth imparts superior nanowire morphology and crystallographic quality by minimizing radial growth and eliminating twinning defects. Photoluminescence measurements confirm the excellent optical quality of these two-temperature grown nanowires. Two mechanisms are proposed to explain the success of this two-temperature growth process, one involving Au nanoparticle-GaAs interface conditions and the other involving melting-solidification temperature hysteresis of the Au-Ga nanoparticle alloy.
Resumo:
The structural and morphological characteristics of InAs/GaAs radial nanowire heterostructures were investigated using transmission electron microscopy. It has been found that the radial growth of InAs was preferentially initiated on the { 112 } A sidewalls of GaAs nanowires. This preferential deposition leads to extraordinarily asymmetric InAs/GaAs radial nanowire heterostructures. Such formation of radial nanowire heterostructures provides an opportunity to engineer hierarchical nanostructures, which further widens the potential applications of semiconductor nanostructures. © 2008 American Institute of Physics.
Resumo:
We have investigated the structural and optical properties of III-V nanowires grown by metalorganic chemical vapour deposition. Binary GaAs, InAs and InP nanowires, and ternary InGaAs and AlGaAs nanowires, have been fabricated and characterised. A variety of axial and radial heterostructures have also been fabricated, including GaAs/AlGaAs core-multishell and GaAs/InGaAs superlattice nanowires. GaAs/AlGaAs core-shell nanowires exhibit strong photoluminescence as the AlGaAs shell passivates the GaAs nanowire surface reducing the surface nonradiative recombination. © 2007 IEEE.
Resumo:
We investigate the growth of III-V nanowires by MOCVD and the structural and optical properties of these nanowires. Binary and ternary nanowires of GaAs, InAs, InP, AlGaAs and InGaAs are achieved. We discuss the nucleation and growth issues involved in fabricating high quality nanowires suitable for device applications. We have fabricated and characterised a variety of axial and radial heterostructures including GaAs/InGaAs superlattices, and GaAs/AlGaAs core-shell and core-multishell nanowires. © 2007 IEEE.
Resumo:
We have investigated the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures, fabricated by metalorganic chemical vapor deposition. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices. We have developed a two-temperature growth procedure to optimize nanowire morphology. An initial high temperature step promotes nucleation and epitaxial growth of straight (111)B-oriented nanowires. Lower temperatures are employed subsequently, to minimise radial growth. © 2007 IEEE.
Resumo:
We have investigated the growth, structural properties and photoluminescence of novel GaAs/AlGaAs radial heterostructure nanowires, fabricated by metalorganic chemical vapour deposition. The effect of growth temperature on nanowire morphology is discussed. Strong photoluminescence is observed from GaAs nanowires with AlGaAs shells. Core/multishell nanowires, of GaAs cores clad in several alternating layers of thick AlGaAs barrier shells and thin GaAs quantum well shells, exhibit a blue-shifted photoluminescence peak believed to arise from quantum confinement effects. A novel two-temperature growth procedure for obtaining GaAs cores is introduced, and other nanowire heterostructures are addressed. © 2006 IEEE.
Resumo:
We review our results on integrated photonic devices fabricated using InGaAs quantum-dots. Selective-area metal organic chemical vapor deposition (MOCVD) is used to grow the active region with quantum dots emitting at different wavelengths for fabrication of the integrated devices. We will also review the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures grown by MOCVD. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with several alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices.
Resumo:
This paper presents flow field measurements for the turbulent stratified burner introduced in two previous publications in which high resolution scalar measurements were made by Sweeney et al. [1,2] for model validation. The flow fields of the series of premixed and stratified methane/air flames are investigated under turbulent, globally lean conditions (φg=0.75). Velocity data acquired with laser Doppler anemometry (LDA) and particle image velocimetry (PIV) are presented and discussed. Pairwise 2-component LDA measurements provide profiles of axial velocity, radial velocity, tangential velocity and corresponding fluctuating velocities. The LDA measurements of axial and tangential velocities enable the swirl number to be evaluated and the degree of swirl characterized. Power spectral density and autocorrelation functions derived from the LDA data acquired at 10kHz are optimized to calculate the integral time scales. Flow patterns are obtained using a 2-component PIV system operated at 7Hz. Velocity profiles and spatial correlations derived from the PIV and LDA measurements are shown to be in very good agreement, thus offering 3D mapping of the velocities. A strong correlation was observed between the shape of the recirculation zones above the central bluff body and the effects of heat release, stoichiometry and swirl. Detailed analyses of the LDA data further demonstrate that the flow behavior changes significantly with the levels of swirl and stratification, which combines the contributions of dilatation, recirculation and swirl. Key turbulence parameters are derived from the total velocity components, combining axial, radial and tangential velocities. © 2013 The Combustion Institute.
Resumo:
This paper studies the low frequency vibrational behaviour of a submerged hull. The submerged hull is modelled as a finite fluid-loaded cylindrical shell closed at each end by circular plates. The external pressure acting on the hull due to the fluid loading is analytically calculated using an infinite model. Three excitation cases of the hull are considered. In the first model, an axial point force is applied at the centre of one end plate, giving rise to an axisymmetric case in which only the zeroth circumferential shell modes are excited. In the second model, an axial point force is applied at the edge of the end plate. In the third model, a radial point force is applied also at the edge of the end plate. In the second and third load cases, all cylindrical shell circumferential modes are excited. The effects of fluid loading and different excitation locations are studied. A more complex hull model including stiffeners and bulkheads is then examined. A smeared approach is used to analytically model the ring stiffeners. All load cases are again considered and the effects of the various influencing factors on the low frequency responses are described.
Resumo:
This paper is concerned with modelling the effects of swirling flow on turbomachinery noise. We develop an acoustic analogy to predict sound generation in a swirling and sheared base flow in an annular duct, including the presence of moving solid surfaces to account for blade rows. In so doing we have extended a number of classical earlier results, including Ffowcs Williams & Hawkings' equation in a medium at rest with moving surfaces, and Lilley's equation for a sheared but non-swirling jet. By rearranging the Navier-Stokes equations we find a single equation, in the form of a sixth-order differential operator acting on the fluctuating pressure field on the left-hand side and a series of volume and surface source terms on the right-hand side; the form of these source terms depends strongly on the presence of swirl and radial shear. The integral form of this equation is then derived, using the Green's function tailored to the base flow in the (rigid) duct. As is often the case in duct acoustics, it is then convenient to move into temporal, axial and azimuthal Fourier space, where the Green's function is computed numerically. This formulation can then be applied to a number of turbomachinery noise sources. For definiteness here we consider the noise produced downstream when a steady distortion flow is incident on the fan from upstream, and compare our results with those obtained using a simplistic but commonly used Doppler correction method. We show that in all but the simplest case the full inclusion of swirl within an acoustic analogy, as described in this paper, is required. © 2013 Cambridge University Press.
Resumo:
An optimization process has been used to design an ultra-low count fan outlet guide vane with an unconventional leading edge profile to reduce the interaction noise. Computational fluid dynamics has been used to predict the aerodynamic and acoustic performance of the stator vane. The final stator design has been built and tested in a representative fan stage rig to determine its tone noise characteristics. The stator vane is found to give significant tone noise reduction at the fundamental blade passing frequency at cut-back in line with design expectations. Detailed comparisons of predicted circumferential and radial modes levels against measured mode detection data are also presented. A good agreement was found between numerical predictions and experimental data.