88 resultados para Quarter wavelength optical thicknesses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a measurement on a GaAs quantum well waveguide with a high built in field across the quantum wells at a wavelength far from the bandedge. The device structure used for the measurement has been fabricated at STC Technology Ltd and is that of a standard laser ridge structure. In fabrication double heterostructure layers are grown on a [001] n + GaAs substrate, with the active region containing two intrinsic GaAs quantum wells of 10nm thickness separated by 10nm. A 4μm wide ridge is etched to provide transverse optical guiding. The experimental work has involved the use of 1.06μm wavelength light from a Q-switched Nd:YAG laser. Any induced change in refractive index is determined by measuring the change in transmission of the quantum well waveguide Fabry-Perot cavity. The waveguide is placed on a Peltier temperature controller to allow thermal tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated a resonant refractive nonlinearity in a semiconductor waveguide by measuring intensity dependent phase shifts and bias-dependent recovery times. The measurements were performed on an optimized 750-μm-long AR coated buried heterostructure MQW p-i-n waveguide with a bandedge at 1.48 μm. Figure 1 shows the experimental arrangement. The mode-locked color center laser was tuned to 50 meV beyond the bandedge and 8 ps pulses with peak incident power up to 57 W were coupled into the waveguide. Some residual bandtail absorption remains at this wavelength and this is sufficient to cause carriers to be photogenerated and these give rise to a refractive nonlinearity, predominantly by plasma and bandfilling effects. A Fabry-Perot interferometer is used to measure the spectrum of the light which exits the waveguide. The nonlinearity within the guide causes self phase modulation (SPM) of the light and a study of the spectrum allows information to be recovered on the magnitude and recovery time of the nonlinear phase shift with a reasonable degree of accuracy. SPM spectra were recorded for a variety of pulse energies coupled into he unbiased waveguide. Figure 2 shows the resultant phase shift measured from the SPM spectra as a function of pulse energy. The relationship is a linear one, indicating that no saturation of the nonlinearity occurs for coupled pulse energies up to 230 pJ. A π phase shift, the minimum necessary for an all-optical switch, is obtained for a coupled pulse energy of 57 pJ while the maximum phase shift, 4 π, was measured for 230 pJ. The SPM spectra were highly asymmetric with pulse energy shifted to higher frequencies. Such spectra are characteristic of a slow, negative nonlinearity. This relatively slow speed is expected for the unbiased guide as the recovery time will be of the order of the recombination time of the photogenerated electrons, about 1 ns for InGaAsP material. In order to reduce the recovery time of the nonlinearity, it is necessary to remove the photogenerated carriers from the waveguide by a process other than recombination. One such technique is to apply a reverse bias to the waveguide in order to sweep the carriers out. Figure 3 shows the effect on the recovery time of the nonlinearity of applying reverse bias to the waveguide for 230 pJ coupled power. The recovery time was reduced from one much longer than the length of the pulse, estimated to be about 1 ns, at zero bias to 18 ± 3 ps for a bias voltage greater than -4 V. This compares with a value of 24 ps obtained in a bulk waveguide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferometric Optical Wavelength Converters (IOWCs) provide wavelength conversion functionality at high bit rates, and give low chip and enhanced extinction ratio compared with Cross-Gain wavelength converters. In paper, a numerical simulation is conducted to assess the noise performance of IOWC and its potential for cascading. The details of the experiment and the results obtained are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated semiconductor optical amplifier/distributed feedback (SOA/DFB) laser that show promise as a simple all-optical wavelength conversion device together with useful simultaneous functions such as 2R regeneration and the ability to remove a wavelength identifying tone is presented. Wavelength conversion performance at 20Gb/s and 40Gb/s can be obtained with this laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarization-insensitivity is achieved in a reflective spatial light modulator by laying a quarter-wave plate (QWP) at the incident wavelength directly over the mirror pixels of a silicon backplane, and forming a nematle Fréedrickcz cell over the QWP to modulate the reflected phase. To achieve the highest drive voltage from the available silicon process, a switched voltage common front electrode design is described, with variable amplitude square wave drive to the pixels to maintain constant root-mean-square drive and minimize phase fluctuations during the dc balance refresh cycle. The silicon has been fabricated and liquid-crystal-on-silicon cells both with and without the QWP assembled; applications include optically transparent switches for optical networks, beam steering for add-drop multiplexers for wavelength-division- multiplexing telecommunications, television multicast, and holographic projection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wavelength dependent transmission performance of adaptively modulated optical OFDM (AMOOFDM) signals is investigated, for the first time, over optical amplification- and chromatic dispersion compensation-free IMDD SMF systems using semiconductor optical amplifiers (SOAs) as intensity modulators. A theoretical SOA model describing both optical gain saturation and gain spectral dynamics is developed, based on which optimum SOA operating conditions are identified for various wavelengths varying in a broad range of 1510 nm- 1590 nm. Results show that, SOA intensity modulators operating at the identified optimum conditions enable the realization of colourless AMOOFDM transmitters within the aforementioned wavelength window. Such transmitters are capable of supporting >30 Gb/s signal transmission over 60 km SMFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wavelength offset super Gaussian optical filters enable 7dB increases in optical power budget of 11.25Gb/s optical OFDM PON systems using directly modulated DFBs, considerably relax filter bandwidth requirement and improve performance robustness to bandwidth variation. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of 0.02nm bandwidth optical bandpass filters with 0.01nm wavelength offsets from optical carrier wavelengths in the optical OFDM (OOFDM) transmitter improves optical power budgets by 7dB at a total channel BER of 1×10 -3 in directly modulated laser-based IMDD PON systems. ©2010 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown for the first time that uncooled tunable DBR-laser diodes can be used as athermal WDM sources. Using novel bias current control, absolute wavelength control to within 6Å has been achieved for temperatures up to 70°C. © 2000 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a fibre-optic communication network, the wavelength-division multiplexing (WDM) technique enables an expansion of the data-carrying capacity of optical fibres. This can be achieved by transmitting different channels on a single optical fibre, with each channel modulating a different wavelength. In order to access and manipulate these channels at a node of the network, a compact holographic optical switch is designed, modelled, and constructed. The structure of such a switch consists of a series of optical components which are used to collimate the beam from the input, de-multiplex each individual wavelength into separated channels, manipulate the separated channels, and reshape the beam to the output. A spatial light modulator (SLM) is crucial in this system, offering control and flexibility at the channel manipulation stage, and providing the ability to redirect light into the desired output fibre. This is achieved by the use of a 2-D analogue phase computer generated hologram (CGH) based on liquid crystal on silicon (LCOS) technology. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The movement of the circular piston in an oscillating piston positive displacement flowmeter is important in understanding the operation of the flowmeter, and the leakage of liquid past the piston plays a key role in the performance of the meter. The clearances between the piston and the chamber are small, typically less than 60 νm. In order to measure this film thickness a fluorescent dye was added to the water passing through the meter, which was illuminated with UV light. Visible light images were captured with a digital camera and analysed to give a measure of the film thickness with an uncertainty of less than 7%. It is known that this method lacks precision unless careful calibration is undertaken. Methods to achieve this are discussed in the paper. The grey level values for a range of film thicknesses were calibrated in situ with six dye concentrations to select the most appropriate one for the range of liquid film thickness. Data obtained for the oscillating piston flowmeter demonstrate the value of the fluorescence technique. The method is useful, inexpensive and straightforward and can be extended to other applications where measurement of liquid film thickness is required. © 2011 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).