83 resultados para Pruning algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a derivation of the adjoint low Mach number equations and their implementation and validation within a global mode solver. The advantage of using the low Mach number equations and their adjoints is that they are appropriate for flows with variable density, such as flames, but do not require resolution of acoustic waves. Two versions of the adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The most unstable global mode calculated with the discrete-adjoint has exactly the same eigenvalue as the corresponding direct global mode but contains numerical artifacts near the inlet. The most unstable global mode calculated with the continuous-adjoint has no numerical artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually converges more quickly than the discrete-adjoint but is more challenging to implement. Finally, the direct and adjoint global modes are combined in order to calculate the wavemaker region of a low density jet. © 2011 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While a large amount of research over the past two decades has focused on discrete abstractions of infinite-state dynamical systems, many structural and algorithmic details of these abstractions remain unknown. To clarify the computational resources needed to perform discrete abstractions, this paper examines the algorithmic properties of an existing method for deriving finite-state systems that are bisimilar to linear discrete-time control systems. We explicitly find the structure of the finite-state system, show that it can be enormous compared to the original linear system, and give conditions to guarantee that the finite-state system is reasonably sized and efficiently computable. Though constructing the finite-state system is generally impractical, we see that special cases could be amenable to satisfiability based verification techniques. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe simple yet scalable and distributed algorithms for solving the maximum flow problem and its minimum cost flow variant, motivated by problems of interest in objects similarity visualization. We formulate the fundamental problem as a convex-concave saddle point problem. We then show that this problem can be efficiently solved by a first order method or by exploiting faster quasi-Newton steps. Our proposed approach costs at most O(|ε|) per iteration for a graph with |ε| edges. Further, the number of required iterations can be shown to be independent of number of edges for the first order approximation method. We present experimental results in two applications: mosaic generation and color similarity based image layouting. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression models. Although our relaxation involves a semidefinite matrix variable, we reformulate the problem to eliminate the need for general semidefinite programming. In particular, we provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating steps of closed-form updates. We evaluate the methods against Expectation-Maximization in a real problem of motion segmentation from video data.