75 resultados para Piles de pont
Resumo:
Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2×2 pile groups with bending and geometric properties similar to real 0.5m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group, London.
Resumo:
Numerous piles are often subjected to the combination of cyclic axial and cyclic lateral loads in service, such as piled foundations for offshore platforms which may suffer swaying and rocking motions owing to wind and wave actions. In this research, centrifuge tests were conducted to investigate the effect of previous cyclic axial loads on the performance of pile groups subjected to subsequent cyclic lateral loads. Different pile installation methods were also applied to study the different behaviour of bored and jacked pile groups subjected to cyclic loads. During lateral load cycling, it is seen that cyclic axial loads to which pile groups were previously subjected could reduce the pile cap permanent lateral displacement in the first lateral load cycle but do not influence the incremental rate of permanent displacement in the following lateral load cycles. Moreover, it is found that previous cyclic axial loads could improve the pile cap cyclic lateral secant stiffness, especially for the pre-jacked pile group. When rocking motions were induced by cyclic lateral loads, pile groups subjected to cyclic axial loads before have smaller permanent settlement than those without the cyclic axial loading effect. The designers of piles that are intended to resist significant lateral loads without excessive deformations in service may wish to deploy cyclic axial preloading, accordingly.
Resumo:
The widespread use of piled foundations in areas prone to liquefaction has led to significant research being carried out to understand their behaviour during earthquakes. A key challenge inmodelling this problemin a centrifuge is the installation procedure, and in most dynamic centrifuge experiments piles are installed before the test commences, either pushing the piles at 1g, or fixing the piles in the model and the sand poured around them. In this paper, a series of dynamic centrifuge experiments are described in which a 2 × 2 pile group is pushed into the model before the test begins and also once the centrifuge has reached the test acceleration. The paper focuses on the key differences which were observed in the pile group's response to the earthquake motion, and in particular, the very different settlement responses of the pile groups.
Resumo:
An innovative technique based on optical fibre sensing that allows continuous strain measurement has recently been introduced in structural health monitoring. Known as Brillouin Optical Time-Domain Reflectometry (BOTDR), this distributed optical fibre sensing technique allows measurement of strain along the full length (up to 10km) of a suitably installed optical fibre. Examples of recent implementations of BOTDR fibre optic sensing in piles are described in this paper. Two examples of distributed optical fibre sensing in piles are demonstrated using different installation techniques. In a load bearing pile, optical cables were attached along the reinforcing bars by equally spaced spot gluing to measure the axial response of pile to ground excavation induced heave and construction loading. Measurement of flexural behaviour of piles is demonstrated in the instrumentation of a secant piled wall where optical fibres were embedded in the concrete by simple endpoint clamping. Both methods have been verified via laboratory works. © 2009 IOS Press.
Resumo:
This paper explores the influence of the piled foundation on the building response to excavation-induced deformations. The influence of the type of foundation, the position of positive and negative skin friction zones, and the flexibility of the piles is evaluated with respect to both horizontal and vertical soil deformations. Case histories from the Netherlands are included from Amsterdam (North South Line) and Rotterdam (a building adjacent to the Willemspoortunnel). Most of the buildings are founded on timber piles ranging in length from 12-17 m. Conclusions are drawn about the interaction between the piled building and the soil deformation. © 2012 Taylor & Francis Group.
Resumo:
A study of the influence of tunnelling on piled foundations was recently completed at the University of Cambridge. The study focussed on tunnelling near driven piles in dense sand and was carried out by means of centrifuge modelling. This paper presents a summary of the main findings, describing the mechanism controlling tunnelling-induced pile behaviour, a zone of influence around the tunnel where piles might be affected and recommendations for tunnelling near piles in practice. Both single piles and pile groups are considered.
Resumo:
The vibration response of piled foundations due to ground-borne vibration produced by an underground railway is a largely-neglected area in the field of structural dynamics. However, this continues to be an important aspect of research as it is expected that the presence of piled foundations can have a significant influence on the propagation and transmission of the wavefield produced by the underground railway. This paper presents a comparison of two methods that can be employed in calculating the vibration response of a piled foundation: an efficient semi-analytical model, and a Boundary Element model. The semi-analytical model uses a column or an Euler beam to model the pile, and the soil is modelled as a linear, elastic continuum that has the geometry of a thick-walled cylinder with an infinite outer radius and an inner radius equal to the radius of the pile. The boundary element model uses a constant-element BEM formulation for the halfspace, and a rectangular discretisation of the circular pile-soil interface. The piles are modelled as Timoshenko beams. Pile-soil-pile interactions are inherently accounted for in the BEM equations, whereas in the semi-analytical model these are quantified using the superposition of interaction factors. Both models use the method of joining subsystems to incorporate the incident wavefield generated by the underground railway into the pile model. Results are computed for a single pile subject to an inertial loading, pile-soil-pile interactions, and a pile group subjected to excitation from an underground railway. The two models are compared in terms of accuracy, computation time, versatility and applicability, and guidelines for future vibration prediction models involving piled foundations are proposed.
Resumo:
Up to 50% increase in the power density of the existing pressurized water reactor (PWR)-type reactors can be achieved by the use of internally and externally cooled annular fuel geometry. As a result, the accumulated stock-piles of Pu, especially if incorporated infertile-free inert matrix, can be burnt at a substantially higher rate as compared with the conventional mixed oxide-fueled reactors operating at standard power density. In this work, we explore the basic feasibility of a PWR core fully loaded with Pu incorporated infertile-free fuel of annular internally and externally cooled geometry and operating at 150% of nominal power density. We evaluate basic burnable poison designs, fuel management strategies, and reactivity feedback coefficients. The three-dimensional full core neutronic analysis performed with Studsvik Core Management System showed that the design of such a Pu-loaded annular fuel core is feasible but significantly more challenging than the Pu fertile-free core with solid fuel pins operating at nominal power density. The main difficulty arises from the fact that the annular fuel core requires at least 50% higher initial Pu loading in order to maintain the standard fuel cycle length of 18 months. Such a high Pu loading results in hardening of the neutron spectrum and consequent reduction in reactivity worth of all reactivity control mechanisms and, in some cases, positive moderator temperature coefficient (MTC). The use of isotopically enriched Gd and Er burnable poisons was found to be beneficial with respect to maximizing Pu burnup and reducing power peaking factors. Overall, the annular fertile-free Pu-loaded high-power-density core appears to be feasible, although it still has relatively high power peaking and potential for slightly positive MTC at beginning of cycle. However, we estimate that limiting the power density to 140% of the nominal case would assure acceptable core power peaking and negative MTC at all times during the cycle.
Resumo:
During strong earthquakes, significant excess pore pressures can develop in saturated soils. After shaking ceases, the dissipation of these pressures can cause significant soil settlement, creating downward-acting frictional loads on piled foundations. Additionally, if the piles do not support the full axial load at the end of shaking, then the proportion of the superstructure's vertical loading carried by the piles may change as a result of the soil settlement, further altering the axial load distribution on piles as the soil consolidates. In this paper, the effect of hydraulic conductivity and initial post-shaking pile head loading is investigated in terms of the changing axial load distribution and settlement responses. The investigation is carried out by considering the results from four dynamic centrifuge experiments in which a 2 × 2 pile group was embedded in a two-layer profile and subjected to strong shaking. It is found that large contrasts in hydraulic conductivity between the two layers of the soil model affected both the pile group settlements and axial load distribution. Both these results stem from the differences in excess pore pressure dissipation, part of which took place very rapidly when the underlying soil layer had a large hydraulic conductivity.
Resumo:
Monopile foundations, currently designed using the p-y method, are technically viable in supporting larger offshore wind turbines in waters to a depth of 30 m. The p-y method was developed to better understand the behavior of laterally loaded long slender piles required for the offshore oil and gas installations. The lateral load-deformation behavior of two monopiles, 5 and 7.5 m dia, installed in soft clays of varying undrained shear strength and stiffness, was studied. A combination of axial and lateral loads expected at an offshore wind farm location with a water depth of 30 m was used in the analysis. It was established that the Matlock (1970) p-y curves are too soft and under-estimate the ultimate soil reaction at all depths except at the monopile tip. At the pile tip, the base shear was not accounted for in the p-y curves, hence resulting in the over-estimation of the soil reaction. Consequently, the Matlock (1970) p-y formulation significantly underestimates the monopile ultimate lateral capacity. The use of the Matlock (1970) p-y method would result in over-conservative designs of monopiles for offshore wind turbines. This is an abstract of a paper presented at the Offshore Technology Conference (Houston, TX 5/6-9/2013).
Resumo:
Monopiles supporting offshore wind turbines are subjected to cyclic lateral loading. The properties of the applied cyclic lateral load are known to have an effect on the accumulation of permanent displacement and rotation at the pile head. The results of centrifuge testing on model piles show that certain loading regimes lead to the development of locked in soil stresses around the pile. These locked in soil stresses change the stiffness of the monopile response to cyclic lateral loading and the natural frequency of the pile-soil system. © 2014 Taylor & Francis Group.
Resumo:
A series of strong earthquakes near Christchurch, New Zealand, occurred between September 2010 and December 2011, causing widespread liquefaction throughout the city's suburbs. Lateral spreading developed along the city's Avon River, damaging many of the bridges east of the city centre. The short-to medium-span bridges exhibited a similar pattern of deformation, involving back-rotation of their abutments and compression of their decks. By explicitly considering the rotational equilibrium of the abutments about their point of contact with the rigid bridge decks, it is shown that relatively small kinematic demands from the laterally spreading backfill soil are needed to initiate pile yielding, and that this mode of deformation should be taken into account in the design of the abutments and abutment piles.
Resumo:
This paper presents a three-dimensional comprehensive model for the calculation of vibration in a building based on pile-foundation due to moving trains in a nearby underground tunnel. The model calculates the Power Spectral Density (PSD) of the building's responses due to trains moving on floating-slab tracks with random roughness. The tunnel and its surrounding soil are modelled as a cylindrical shell embedded in half-space using the well-known PiP model. The building and its piles are modelled as a 2D frame using the dynamic stiffness matrix. Coupling between the foundation and the ground is performed using the theory of joining subsystems in the frequency domain. The latter requires calculations of transfer functions of a half-space model. A convenient choice based on the thin-layer method is selected in this work for the calculations of responses in a half-space due to circular strip loadings. The coupling considers the influence of the building's dynamics on the incident wave field from the tunnel, but ignores any reflections of building's waves from the tunnel. The derivation made in the paper shows that the incident vibration field at the building's foundation gets modified by a term reflecting the coupling and the dynamics of the building and its foundation. The comparisons presented in the paper show that the dynamics of the building and its foundation significantly change the incident vibration field from the tunnel and they can lead to loss of accuracy of predictions if not considered in the calculation.
Resumo:
In typical conventional foundation design, the inherent variability of soil properties, model uncertainty and construction variability are not modeled explicitly. A main drawback of this is that the effect of each variability on the probability of an unfavorable event cannot be evaluated quantitatively. In this paper, a method to evaluate the uncertainty-reduction effect on the performance of a vertically-loaded pile foundation by monitoring the pile performance (such as pile load testing or placing sensors in piles) is proposed. The effectiveness of the proposed method is examined based on the investigation of a 120-pile foundation placed on three different ground profiles. The computed results show the capability of evaluating the uncertainty-reduction effect on the performance of a pile foundation by monitoring. © 2014 Taylor & Francis Group, London.
Resumo:
In the central part of the Delft railway tunnel project, an underground railway station is being built at very close distance to the existing station building, which is still in operation. Although elaborate sensitivity analyses were made, some unforeseen deformations were encountered during the first phases of the execution process. Especially the installation of temporary sheet pile walls as well as the installation of a huge amount of grout anchor piles resulted in deformations exceeding the predicted final deformations as well as the boundary values defined by a level I limiting tensile strain method (LTSM) approach. In order to ensure the execution process, supplementary analyses were made to predict future deformations, and this for multiple cross sections. These deformations were implemented into a finite element model of the masonry of the building in order to define probable crack formation. This Level II LTSM approach made it possible to increase the initially foreseen deformation criteria and the continuation of the works. Design steps, design models and monitoring results will be explained within this paper.