87 resultados para Phenotypic tests
Resumo:
In this paper, we present two classes of Bayesian approaches to the two-sample problem. Our first class of methods extends the Bayesian t-test to include all parametric models in the exponential family and their conjugate priors. Our second class of methods uses Dirichlet process mixtures (DPM) of such conjugate-exponential distributions as flexible nonparametric priors over the unknown distributions.
Resumo:
The dynamic properties of dry Leighton Buzzard sand have been investigated using a resonant column test apparatus. These data are compared with very low frequency cyclic tests on identical specimens of sand. The comparison indicates that the properties of dry sand are independent of frequency. A simple one-dimensional model of kinematic hardening plasticity is used to predict the dynamic behaviour of the sand. The input parameters for this model are based on the results of static tests. These may be conducted on standard laboratory equipment with only minor modifications. The predictions are in good agreement with the measured data.
Resumo:
This paper presents a series of centrifuge tests carried out to investigate the performance of non-structural inclined micro-piles as a potential liquefaction remediation method for existing buildings. Both a single-degree-of-freedom frame structure and a two-storey, two-degree-of-freedom frame structure were used as model buildings in these tests. Centrifuge tests were carried out with and without micro-piles in the foundation soil for each structure. Results primarily from the tests with the SDOF structure are presented in this paper. It is found that the micro-piles have some beneficial effect by increasing shear strains in the soil in their vicinity and hence causing dilation in these zones. However, they also increase structural accelerations by transmitting accelerations from deep in the soil and the beneficial effects from increased dilation are outweighed by the detrimental migration of pore pressures.
Resumo:
The heterogeneous nature of the subsurface and associated DNAPL morphologies often poses the greatest limitation to source zone clean-up strategies. Hence, detailed site characterisation techniques are required. The data presented in this paper has been collected from a series of laboratory 2-D tank experiments and numerical simulations of Partitioning Interwell Tracer Tests (PITT) in a wide range of aquifer conditions and DNAPL morphologies. Alternative uses of tracer breakthrough data have been developed In order to characterise the mass flux generated from the DNAPL source. By combining the laboratory and numerical data, a relationship between normalised mass flux and tracer-based average source zone DNAPL saturation has been established. Knowledge of such a relationship allows remediation targets to be identified, clean-up efficiencies to be evaluated, and increases the accuracy of any risk assessment.
Resumo:
A two-step viscoelastic spherical indentation method is proposed to compensate for 1) material relaxation and 2) sample thickness. In the first step, the indenter is moved at a constant speed and the reaction force is measured. In the second step, the indenter is held at a constant position and the relaxation response of the material is measured. Then the relaxation response is fit with a multi-exponential function which corresponds to a three-branch general Maxwell model. The relaxation modulus is derived by correcting the finite ramp time introduced in the first step. The proposed model takes into account the sample thickness, which is important for applications in which the sample thickness is less than ten times the indenter radius. The model is validated numerically by finite element simulations. Experiments are carried out on a 10% gelatin phantom and a chicken breast sample with the proposed method. The results for both the gelatin phantom and the chicken breast sample agree with the results obtained from a surface wave method. Both the finite element simulations and experimental results show improved elasticity estimations by incorporating the sample thickness into the model. The measured shear elasticities of the 10% gelatin sample are 6.79 and 6.93 kPa by the proposed finite indentation method at sample thickness of 40 and 20 mm, respectively. The elasticity of the same sample is estimated to be 6.53 kPa by the surface wave method. For the chicken breast sample, the shear elasticity is measured to be 4.51 and 5.17 kPa by the proposed indentation method at sample thickness of 40 and 20 mm, respectively. Its elasticity is measured by the surface wave method to be 4.14 kPa. © 2011 IEEE.
Resumo:
The horizontal arching mechanism transfers horizontal earth pressures acting on flexible retaining wall panels to stiffer neighbouring elements via soil shear stresses. In this research, the horizontal arching mechanism and lateral displacements of fixed cantilever walls in a model basement are investigated using centrifuge tests. A series of six tests was carried out at 45 gravities where the panel widths and thicknesses around the model basement were varied, so that the effects of panel geometry and stiffness on horizontal arching could be studied. It is shown that panel crest displacements and base bending moments of the most flexible, narrow panels can be an order of magnitude smaller than conventional active earth pressure calculations would allow. It is suggested that the reduction of earth pressure acting on a panel is directly correlated to the mobilized soil shear strength and hence, soil shear strain. Earth pressure coefficients K are plotted against panel displacements normalized by the panel width, u/B, to simulate the reduction of K with increasing soil strain.An idealized K-u/B curve is introduced, characterised by a reference distortion (u/B) ref beyond which fully plastic soil arching can be inferred, and which is related to the corresponding reference shear strain γ ref at which soil strength is fully mobilized in element tests. © 2006 Taylor & Francis Group, London.
Resumo:
This paper provides a case study on the deepest excavation carried out so far in the construction of the metro network in Shanghai, which typically features soft ground. The excavation is 38 m deep with retaining walls 65 m deep braced by 9 levels of concrete props. To obtain a quick and rough prediction, two centrifuge model tests were conducted, in which one is for the 'standard' section with green field surrounding and the other with an adjacent piled building. The tests were carried out in a run-stop-excavation-run style, in which excavation was conducted manually. By analyzing the lateral wall displacement, ground deformation, bending moment and earth pressure, the test results are shown to be reasonably convincing and the design and construction were validated. Such industry orientated centrifuge modeling was shown to be useful in understanding the performance of geotechnical processes, especially when engineers lack relevant field experience. © 2010 Taylor & Francis Group, London.
Resumo:
In the framework of the Italian research project ReLUIS-DPC, a set of centrifuge tests were carried out at the Schofield Centre in Cambridge (UK) to investigate the seismic behaviour of tunnels. Four samples of dry sand were prepared at different densities, in which a small scale model of circular tunnel was inserted, instrumented with gauges measuring hoop and bending strains. Arrays of accelerometers in the soil and on the box allowed the amplification of ground motion to be evaluated; LVDTs measured the soil surface settlement. This paper describes the main results of this research, showing among others the evolution of the internal forces during the model earthquakes at significant locations along the tunnel lining. © 2010 Taylor & Francis Group, London.
Resumo:
The Particle Image Velocimetry (PIV) technique is an image processing tool to obtain instantaneous velocity measurements during an experiment. The basic principle of PIV analysis is to divide the image into small patches and calculate the locations of the individual patches in consecutive images with the help of cross correlation functions. This paper focuses on the application of the PIV analysis in dynamic centrifuge tests on small scale tunnels in loose, dry sand. Digital images were captured during the application of the earthquake loading on tunnel models using a fast digital camera capable of taking digital images at 1000 frames per second at 1 Megapixel resolution. This paper discusses the effectiveness of the existing methods used to conduct PIV analyses on dynamic centrifuge tests. Results indicate that PIV analysis in dynamic testing requires special measures in order to obtain reasonable deformation data. Nevertheless, it was possible to obtain interesting mechanisms regarding the behaviour of the tunnels from PIV analyses. © 2010 Taylor & Francis Group, London.
Resumo:
A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.
Resumo:
The increments of internal forces induced in a tunnel lining during earthquakes can be assessed with several procedures at different levels of complexity. However, the substantial lack of well-documented case histories still represents a difficulty in order to validate any of the methods proposed in literature. To bridge this gap, centrifuge model tests were carried out on a circular aluminium tunnel located at two different depths in dense and loose dry sand. Each model has been instrumented for measuring soil motion and internal loads in the lining and tested under several dynamic input signals. The tests performed represented an experimental benchmark to calibrate dynamic analyses with different approaches to account for soil-tunnel kinematic interaction. © 2009 IOS Press.