68 resultados para Optimal control problem
Resumo:
Most academic control schemes for MIMO systems assume all the control variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The multiplexed MPC scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, and hence improved performance, despite finding sub-optimal solutions to the original problem. The multiplexed MPC scheme is also closer to industrial practice in many cases. This paper presents initial stability results for two variants of multiplexed MPC, and illustrates the performance benefit by an example. Copyright copy; 2005 IFAC. Copyright © 2005 IFAC.
Resumo:
This paper proposes a form of MPC in which the control variables are moved asynchronously. This contrasts with most MIMO control schemes, which assume that all variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The Multiplexed MPC (MMPC) scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, which may result in improved performance, despite finding sub-optimal solutions to the original problem. This paper describes nominal and robust MMPC, states some stability results, and demonstrates the effectiveness of MMPC through two examples. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
In Multiplexed MPC, the control variables of a MIMO plant are moved asynchronously, following a pre-planned periodic sequence. The advantage of Multiplexed MPC lies in its reduced computational complexity, leading to faster response to disturbances, which may result in improved performance, despite finding sub-optimal solution to the original problem. This paper extends the original Multiplexed MPC in a way such that the control inputs are no longer restricted to a pre-planned periodic sequence. Instead, the most appropriate control input channel would be optimised and selected to counter the disturbances, hence the name 'Channel-Hopping'. In addition, the proposed algorithm is suitable for execution on modern computing platforms such as FPGA or GPU, exploits multi-core, parallel and pipeline computing techniques. The algorithm for the proposed Channel-hopping MPC (CH-MPC) will be described and its stability established. Illustrative examples are given to demonstrate the behaviour of the proposed Channel-Hopping MPC algorithm. © 2011 IFAC.
Resumo:
This paper develops a technique for improving the region of attraction of a robust variable horizon model predictive controller. It considers a constrained discrete-time linear system acted upon by a bounded, but unknown time-varying state disturbance. Using constraint tightening for robustness, it is shown how the tightening policy, parameterised as direct feedback on the disturbance, can be optimised to increase the volume of an inner approximation to the controller's true region of attraction. Numerical examples demonstrate the benefits of the policy in increasing region of attraction volume and decreasing the maximum prediction horizon length. © 2012 IEEE.