84 resultados para Optical fibre preform
Resumo:
The effect of antenna separation in a 3×3 MIMO system using RoF DAS technology is investigated. Larger antenna separation is found to improve the throughput due to reduced channel correlation and improved SNR. © 2011 Optical Society of America.
Resumo:
An integrated EOM VCSELs is shown to offer high linearity (92dB/Hz 2/3 at 6GHz) and by extrapolation ∼90dB/Hz2/3 up to 20GHz. Successful modulation with IEEE 802.11g signals is demonstrated at 6GHz with a 12dB dynamic range. © 2011 Optical Society of America.
Resumo:
This paper describes work on radio over fiber distributed antenna systems for improving the quality of radio coverage for in-building applications. The DAS network has also been shown to provide improved detection for Gen 2 UHF RFID tags. Using pre-distortion to reduce the problem of the RFID second harmonic, a simple heterogeneous sensing and communications system is demonstrated. © 2011 NOrthumbria University.
Resumo:
A complete optical system model has been developed and used to assess chirped fibre Bragg grating dispersion compensators. Gratings suitable for dispersion compensation in both laser based and modulator based optical communications systems have been modelled. A grating 10 cm in length has been shown to permit virtually dispersion free transmission over 425 km, when used in an externally modulated system. Long haul dispersion compensation using several 2 cm gratings spaced at intervals along the fibre is also modelled, illustrating viable 10Gbit/s transmission over a distance in excess of 168 km.
Resumo:
This paper describes the use of fibre optic sensing with Brillouin Optical Time-Domain Reflectometry (BOTDR) for near-continuous (distributed) strain monitoring of a large diameter pipeline, buried in predominantly granular material, subjected to a pipe jack tunnelling operation in London Clay. The pipeline, buried at shallow depth, comprises 4.6 m long sections connected with standard bell and spigot type joints, which connect to a continuous steel pipeline. In this paper the suitability of fibre optic sensing with BOTDR for monitoring pipeline behaviour is illustrated. The ability of the fibre optic sensor to detect local strain changes at joints and the subsequent impact on the overall strain profile is shown. The BOTDR strain profile was also used to infer pipe settlement through a process of double-integration and was compared to pipe settlement measurements. The close approximation of the measured pipe settlement provides further confidence in fibre optic strain sensing with BOTDR to investigate the intricacies of pipeline behaviour, pipe-soil interaction and interaction between pipe sections when subjected to ground movement. Copyright ASCE 2006.
Resumo:
Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).
Resumo:
Detailed investigations of the effectiveness of three widely adopted optical orthogonal frequency division multiplexing (OOFDM) adaptive loading algorithms, including power loading (PL), bit loading (BL), and bit-and-power loading (BPL), are undertaken, over < 100km single-mode fibre (SMF) system without incorporating inline optical amplification and chromatic dispersion (CD) compensation. It is shown that the BPL (PL) algorithm always offers the best (worst) transmission performance. The absolute transmission capacity differences between these algorithms are independent of transmission distance and launched optical power. Moreover, it is shown that in comparison with the most sophisticated BPL algorithm, the simplest PL algorithm is effective in escalating the OOFDM SMF links performance to its maximum potential. On the other hand, when employing a large number of subcarriers and a high digital-to-analogue DAC)/analogue-to-digital (ADC) sampling rate, the sophisticated BPL algorithm has to be adopted. © 2011 IEEE.
Resumo:
Three novel designs of adaptively modulated optical orthogonal frequency division multiplexing modems using subcarrier modulation (AMOOFDM-SCM) are proposed, for the first time, each of which requires a single IFFT/FFT operation. These designs has a number of salient advantages including a significantly simplified modem configuration due to the involvement of a single IFFT/FFT operation, input/output reconfigurability, dynamic bandwidth allocation capability, cost reduction and system flexibility and performance robustness to variations in transmission link conditions. Investigations show that these three modems are capable of supporting >60Gb/s AMOOFDM-SCM signal transmission over 20km, 40km and 60km single-mode fibre-based intensity modulation and direct detection transmission links without optical amplification and chromatic dispersion compensation. Copyright © 2010 The authors.
Resumo:
This paper considers next-generation optical datacommunication standards and discusses the types of modulation formats that are relevant. The performance of several schemes is considered over multimode fibre. The trade-offs between the different modulation formats are considered in terms of link length, receiver sensitivity and complexity of implementation. © 2011 IEEE.
Resumo:
Each mode of a multimode fibre is excited using binary phase patterns on a Spatial Light Modulator and verified by observation of the near-field leaving the fibre and analysis of the step response. © 2011 OSA.
Resumo:
The dramatic increase in hole quality on single crystalline silicon with an 1 μm fiber laser has been reported recently, it redefines the processing options for Si at that wavelength. This study investigated the effects of the MOPA based pulse tuning on the changes of the machined depth and the mass removal mechanism for the generation of microvia holes. Hole depths were measured and surface morphology studied using SEM and optical interferometric profilometry. The pulse peak power was found to strongly influence the material removal mechanism with fixed pulse duration. High peak powers (>1 kW) gave vaporization dominated ablation, left a limited re solidified molten layer and clean hole formation. The pulse duration was found to strongly influence the machined depth. Longer pulse durations generated deeper holes with constant peak power (>1 kW). In comparison with the DPSS UV laser, the IR fiber laser of longer pulse durations machined deeper holes and generated less resolidifed melt beyond the hole rim at high fluencies. The comparison suggests that some applications (microvia drilling) of the DPSS UV laser can be replaced with the more flexible, low cost IR fiber laser. © KSPE and Springer 2012.
Resumo:
The demand for high-speed optical links within local-area networks and storage-area networks continues to grow rapidly, with standards under development that demand single-wavelength solutions at data rates of 30 Gb/s and beyond. Robust low-cost schemes are required, with a particular emphasis on multimode-fibre links using optical transceivers based on vertical-cavity surface-emitting lasers. © 2012 IEEE.
Resumo:
Abstract (40-Word Limit): A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2x2 MIMO link at carrier frequencies up to 6GHz.
Resumo:
Multimode polymer waveguides are promising for use in board-level optical interconnects. In recent years, various on-board optical interconnection architectures have been demonstrated making use of passive routing waveguide components. In particular, 90° bends have played important roles in complex waveguide layouts enabling interconnection between non co-linear points on a board. Due to the dimensions and index step of the waveguides typically used in on-board optical interconnects, low-loss bends are typically limited to a radius of ∼ 10 mm. This paper therefore presents the design and fabrication of compact low-loss waveguide bends with reduced radii of curvature, offering significant reductions in the required areas for on-board optical circuits. The proposed design relies on the exposure of the bend section to the air, achieving tighter light confinement along the bend and reduced bending losses. Simulation studies carried out with ray tracing tools and experimental results from polymer samples fabricated on FR4 are presented. Low bending losses are achieved from the air-exposed bends up to 4 mm of radius of curvature, while an improvement of 14 μm in the 1 dB alignment tolerances at the input of these devices (fibre to waveguide coupling) is also obtained. Finally, the air-exposed bends are employed in an optical bus structure, offering reductions in insertion loss of up to 3.8 dB. © 2013 IEEE.
Resumo:
Real-time orthogonal multipulse modulation is demonstrated at 56 Gb/s with transmission over 500 m of single-mode fiber. Up to 2 dBo power budget advantage is predicted relative to alternatives such as PAM4. © 2013 OSA.