108 resultados para Neural classifiers
Resumo:
In this paper we compare Multi-Layer Perceptrons (a neural network type) with Multivariate Linear Regression in predicting birthweight from nine perinatal variables which are thought to be related. Results show, that seven of the nine variables, i.e., gestational age, mother's body-mass index (BMI), sex of the baby, mother's height, smoking, parity and gravidity, are related to birthweight. We found no significant relationship between birthweight and each of the two variables, i.e., maternal age and social class.
Resumo:
The liquid-crystal light valve (LCLV) is a useful component for performing integration, thresholding, and gain functions in optical neural networks. Integration of the neural activation channels is implemented by pixelation of the LCLV, with use of a structured metallic layer between the photoconductor and the liquid-crystal layer. Measurements are presented for this type of valve, examples of which were prepared for two specific neural network implementations. The valve fabrication and measurement were carried out at the State Optical Institute, St. Petersburg, Russia, and the modeling and system applications were investigated at the Institute of Microtechnology, Neuchâtel, Switzerland.
Resumo:
Four types of neural networks which have previously been established for speech recognition and tested on a small, seven-speaker, 100-sentence database are applied to the TIMIT database. The networks are a recurrent network phoneme recognizer, a modified Kanerva model morph recognizer, a compositional representation phoneme-to-word recognizer, and a modified Kanerva model morph-to-word recognizer. The major result is for the recurrent net, giving a phoneme recognition accuracy of 57% from the si and sx sentences. The Kanerva morph recognizer achieves 66.2% accuracy for a small subset of the sa and sx sentences. The results for the word recognizers are incomplete.