120 resultados para Nanowire


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate the key issues of axial nanowire heterostructures, such as, the fundamental criteria for formation and failure of axial nanowire heterostructures via vapor-liquid-solid mechanism and lateral misfit strain relaxation in these structures. We show the failure of axial nanowire heterostructures by growing InAs axially on GaAs nanowires, and the lateral misfit strain relaxation by axial growth of GaSb on GaAs nanowires. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CW and time-resolved photoluminescence measurements are used to investigate exciton recombination dynamics in GaAsAlGaAs heterostructure nanowires grown with a recently developed technique which minimizes twinning. A thin capping layer is deposited to eliminate the possibility of oxidation of the AlGaAs shell as a source of oxygen defects in the GaAs core. We observe exciton lifetimes of ∼1 ns, comparable to high quality two-dimensional double heterostructures. These GaAs nanowires allow one to observe state filling and many-body effects resulting from the increased carrier densities accessible with pulsed laser excitation. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and compositional characteristics of heterointerfaces of Au-catalyzed GaAs/InAs and InAs/GaAs axial nanowire heterostructures were comprehensively investigated by transmission electron microscopy. It has been found that the GaAs/InAs interface is not sharp and contains an InGaAs transition segment, and in contrast, the InAs/GaAs interface is atomically sharp. This difference in the nature of heterointerfaces can be attributed to the difference in the affinity of the group III elements with the catalyst material. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the structural and optical properties of III-V nanowires grown by metalorganic chemical vapour deposition. Binary GaAs, InAs and InP nanowires, and ternary InGaAs and AlGaAs nanowires, have been fabricated and characterised. A variety of axial and radial heterostructures have also been fabricated, including GaAs/AlGaAs core-multishell and GaAs/InGaAs superlattice nanowires. GaAs/AlGaAs core-shell nanowires exhibit strong photoluminescence as the AlGaAs shell passivates the GaAs nanowire surface reducing the surface nonradiative recombination. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Branched nanowire heterostructures of InAsGaAs were observed during Au-assisted growth of InAs on GaAs nanowires. The evolution of these branches has been determined through detailed electron microscopy characterization with the following sequence: (1) in the initial stage of InAs growth, the Au droplet is observed to slide down the side of the GaAs nanowire, (2) the downward movement of Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and (3) with further supply of In and As vapor reactants, the Au nanoparticles assist the formation of InAs branches with a well-defined orientation relationship with GaAsInAs core/shell stems. We anticipate that these observations advance the understanding of the kink formation in axial nanowire heterostructures. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures, fabricated by metalorganic chemical vapor deposition. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices. We have developed a two-temperature growth procedure to optimize nanowire morphology. An initial high temperature step promotes nucleation and epitaxial growth of straight (111)B-oriented nanowires. Lower temperatures are employed subsequently, to minimise radial growth. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a two-temperature procedure for the growth of GaAs nanowires by metalorganic chemical vapour deposition. An initial high temperature step affords effective nucleation and promotes epitaxial growth of straight (111)B-oriented nanowires. Lower temperatures are employed subsequently, to minimise nanowire tapering during growth. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ CVD calibrations. The morphology of the Ge-Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the dynamics of hot charge carriers in InP nanowire ensembles containing a range of densities of zinc-blende inclusions along the otherwise wurtzite nanowires. From time-dependent photoluminescence spectra, we extract the temperature of the charge carriers as a function of time after nonresonant excitation. We find that charge-carrier temperature initially decreases rapidly with time in accordance with efficient heat transfer to lattice vibrations. However, cooling rates are subsequently slowed and are significantly lower for nanowires containing a higher density of stacking faults. We conclude that the transfer of charges across the type II interface is followed by release of additional energy to the lattice, which raises the phonon bath temperature above equilibrium and impedes the carrier cooling occurring through interaction with such phonons. These results demonstrate that type II heterointerfaces in semiconductor nanowires can sustain a hot charge-carrier distribution over an extended time period. In photovoltaic applications, such heterointerfaces may hence both reduce recombination rates and limit energy losses by allowing hot-carrier harvesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires grown from identical catalyst particles. We compare the transfer characteristics and field-effect mobility versus temperature for these devices to better understand how differences in InAs phase govern the electronic properties of nanowire transistors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gate-modulated nanowire oxide photosensor is fabricated by electron-beam lithography and conventional dry etch processing.. The device characteristics are good, including endurance of up to 10(6) test cycles, and gate-pulse excitation is used to remove persistent photoconductivity. The viability of nanowire oxide phototransistors for high speed and high resolution applications is demonstrated, thus potentially expanding the scope of exploitation of touch-free interactive displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A twin-plane based nanowire growth mechanism is established using Au catalyzed Ge nanowire growth as a model system. Video-rate lattice-resolved environmental transmission electron microscopy shows a convex, V-shaped liquid catalyst-nanowire growth interface for a ⟨112⟩ growth direction that is composed of two Ge {111} planes that meet at a twin boundary. Unlike bulk crystals, the nanowire geometry allows steady-state growth with a single twin boundary at the nanowire center. We suggest that the nucleation barrier at the twin-plane re-entrant groove is effectively reduced by the line energy, and hence the twin acts as a preferential nucleation site that dictates the lateral step flow cycle which constitutes nanowire growth.