170 resultados para Molybdenum oxide
Resumo:
The promising theoretical properties of diamond, together with the recent advances in producing high-quality single crystal diamond substrates, have increased the interest in using diamond in power electronic devices. This paper presents numerical and experimental off-state results for a diamond Schottky barrier diode (SBD), one of most studied unipolar devices in diamond. Finding a suitable termination structure is an essential step towards designing a high voltage diamond device. The ramp oxide structure shows very encouraging electronic performance when used to terminate diamond SBDs. High-k dielectrics are also considered in order to further improve the reliability and electrical performance of the structure. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The paper's goal is the first demonstration of the fabrication of high power Schottky diodes on synthetic diamond using oxide ramp termination. In order to allow full activated impurities at room temperature and a high hole mobility a low boron doping of the drift layer is employed. Several aspects of the manufacturing technology are presented. A termination with a small ramp angle can be obtained using only RIE technique due to diamond wafer nonuniformity (roughness). Experimental forward and reverse characteristics measured on diamond diodes are also included. © 2007 IEEE.
Resumo:
We have studied the response of a sol-gel based TiO(2), high k dielectric field effect transistor structure to microwave radiation. Under fixed bias conditions the transistor shows frequency dependent current fluctuations when exposed to continuous wave microwave radiation. Some of these fluctuations take the form of high Q resonances. The time dependent characteristics of these responses were studied by modulating the microwaves with a pulse signal. The measurements show that there is a shift in the centre frequency of these high Q resonances when the pulse time is varied. The measured lifetime of these resonances is high enough to be useful for non-classical information processing.