83 resultados para Modal transformations
Resumo:
Each mode of a multimode fibre is excited using binary phase patterns on a Spatial Light Modulator and verified by observation of the near-field leaving the fibre and analysis of the step response. © 2011 OSA.
Resumo:
We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 μm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 μm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation. © 2006 Optical Society of America.
Resumo:
This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a `spike', and the second with a longer lengthscale disturbance known as a `modal oscillation'. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.
Resumo:
Chapter 20 Clustering User Data for User Modelling in the GUIDE Multi-modal Set- top Box PM Langdon and P. Biswas 20.1 ... It utilises advanced user modelling and simulation in conjunction with a single layer interface that permits a ...
Resumo:
In the modern and dynamic construction environment it is important to access information in a fast and efficient manner in order to improve the decision making processes for construction managers. This capability is, in most cases, straightforward with today’s technologies for data types with an inherent structure that resides primarily on established database structures like estimating and scheduling software. However, previous research has demonstrated that a significant percentage of construction data is stored in semi-structured or unstructured data formats (text, images, etc.) and that manually locating and identifying such data is a very hard and time-consuming task. This paper focuses on construction site image data and presents a novel image retrieval model that interfaces with established construction data management structures. This model is designed to retrieve images from related objects in project models or construction databases using location, date, and material information (extracted from the image content with pattern recognition techniques).
Resumo:
In this paper we describe the time-varying amplitude and its relation to the global heat release rate of self-excited azimuthal instabilities in a simple annular combustor operating under atmospheric conditions. The combustor was modular in construction consisting of either 12, 15 or 18 equally spaced premixed bluff-body flames around a fixed circumference, enabling the effect of large-scale interactions between adjacent flames to be investigated. High-speed OH* chemiluminescence imaged from above the annulus and pressure measurements obtained at multiple locations around the annulus revealed that the limit cycles of the modes are degenerate in so much as they undergo continuous transitions between standing and spinning modes in both clockwise (CW) and anti-clockwise (ACW) directions but with the same resonant frequency. Similar behaviour has been observed in LES simulations which suggests that degenerate modes may be a characteristic feature of self-excited azimuthal instabilities in annular combustion chambers. By modelling the instabilities as two acoustic waves of time-varying amplitude travelling in opposite directions we demonstrate that there is a statistical prevalence for either standing m=1 or spinning m=±1 modes depending on flame spacing, equivalence ratio, and swirl configuration. Phase-averaged OH* chemiluminescence revealed a possible mechanism that drives the direction of the spinning modes under limit-cycle conditions for configurations with uniform swirl. By dividing the annulus into inner and outer annular regions it was found that the spin direction coincided with changes in the spatial distribution of the peak heat release rate relative to the direction of the bulk swirl induced along the annular walls. For standing wave modes it is shown that the globally integrated fluctuations in heat release rate vary in magnitude along the acoustic mode shape with negligible contributions at the pressure nodes and maximum contributions at the pressure anti-nodes. © 2013.
Resumo:
The self-excited global instability mechanisms existing in flat-plate laminar separation bubbles are studied here, in order to shed light on the causes of unsteadiness and three- dimensionality of unforced, nominally two-dimensional separated flows. The presence of two known linear global mechanisms, namely an oscillator behavior driven by local regions of absolute inflectional instability and a centrifugal instability giving rise to a steady three- dimensionalization of the bubble, is studied in a series of model separation bubbles. Present results indicate that absolute instability, and consequently a global oscillator behavior, does not exist for two-dimensional bubbles with a peak reversed-flow velocity below 12% of the free-stream velocity. However, the three-dimensional instability becomes active for recirculation levels as low as urev ≈ 7%. These findings suggest a route to the three-dimensionality and unsteadiness observed in experiments and simulations substantially different from that usually found in the literature, in which two-dimensional vortex shedding is followed by three-dimensionalization.
Resumo:
Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.
Resumo:
This paper presents an analytical formulation of frequency splitting observed in the elliptical modes of single crystal silicon (SCS) micromechanical disk resonators. Taking the anisotropic elasticity of SCS into account, new formulae for computing modal mass and modal stiffness are first derived for accurate prediction of the modal frequency. The derived results are in good agreement with finite element simulation, showing a factor of 10 improvement in the prediction accuracy as compared to using the formula for the isotropic case. In addition, the analysis successfully explains the effect of anisotropy on the modal frequency splitting of primary elliptical modes, for which the maximum modal displacement is aligned with the directions of maximum (1 1 0) and minimum (1 0 0) elasticity respectively on a (1 0 0) SCS wafer. The measured frequency splitting of other degenerate modes is due to the manufacturing imperfections. © 2014 IOP Publishing Ltd.