62 resultados para Mixing.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive for low emission combustion systems encourages applications using premixed flames. Yet in many applications, considerations of flame stability or mixing times lead to systems with neither premixed nor diffusion flames, which are often called technically premixed or stratified flames. In this talk we discuss the current state of understanding of the effect of mixing and extent of stratification on the structure, microstructure and dynamics of selected turbulent stratified flames. Over the past few years, a significant database of scalar and velocity data has been built to analyze the effects of unmixedness on local and global flame structure. Microscale studies of the flame structures show in detail how the effect of local stratification affects (or not!) the flame structure, flame surface density and scalar dissipation rates, and production of selected species. The experiments place exacting demands on current spectroscopic diagnostics, and reveal the progress and limits to our understanding of turbulent flames in general. The dynamics of stratified flames with respect to instabilities is also shown to be very rich, as the particular shape of the flames and the stabilization points are is significantly affected by the fuel distribution, modifying the rate and location of heat release, and thus the coupling with the surrounding acoustics and determining the onset of self-excitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coalescence and mixing of a sessile and an impacting liquid droplet on a solid surface are studied experimentally and numerically in terms of lateral separation and droplet speed. Two droplet generators are used to produce differently colored droplets. Two high-speed imaging systems are used to investigate the impact and coalescence of the droplets in color from a side view with a simultaneous gray-scale view from below. Millimeter-sized droplets were used with dynamical conditions, based on the Reynolds and Weber numbers, relevant to microfluidics and commercial inkjet printing. Experimental measurements of advancing and receding static contact angles are used to calibrate a contact angle hysteresis model within a lattice Boltzmann framework, which is shown to capture the observed dynamics qualitatively and the final droplet configuration quantitatively. Our results show that no detectable mixing occurs during impact and coalescence of similar-sized droplets, but when the sessile droplet is sufficiently larger than the impacting droplet vortex ring generation can be observed. Finally we show how a gradient of wettability on the substrate can potentially enhance mixing.