66 resultados para Migrations forcées


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new approach to model the forces on a tread block for a free-rolling tyre in contact with a rough road. A theoretical analysis based on realistic tread mechanical properties and road roughness is presented, indicating partial contact between a tread block and a rough road. Hence an asperity-scale indentation model is developed using a semi-empirical formulation, taking into account both the rubber viscoelasticity and the tread block geometry. The model aims to capture the essential details of the contact at the simplest level, to make it suitable as part of a time-domain dynamic analysis of the coupled tyre-road system. The indentation model is found to have a good correlation with the finite element (FE) predictions and is validated against experimental results using a rolling contact rig. When coupled to a deformed tyre belt profile, the indentation model predicts normal and tangential force histories inside the tyre contact patch that show good agreement with FE predictions. © 2012 Elsevier B.V..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Responsive Particle Dynamics model is a very efficient method to account for the transient forces present in complex fluids, such as solutions of entangled polymers. This coarse-grained model considers a solution of particles that are made of a core and a corona. The cores typically interact through conservative interactions, while the coronae transiently penetrate each other to form short-lived temporary interactions, typically of entropic origin. In this study, we reformulate the resulting rheological model within the general framework of nonequilibrium thermodynamics called General Equation for the Nonequilibrium Reversible-Irreversible Coupling. This allows us to determine the consistency of the model, from a mechanistic and thermodynamic point of view, and to isolate the reversible and irreversible contributions to the dynamics of the model system. © 2012 Springer-Verlag Berlin Heidelberg.