65 resultados para Methane Consumption
Resumo:
Cascaded 4×4 SOA switches with on-chip power monitoring exhibit potential for lowpower 16×16 integrated switches. Cascaded operation at 10Gbit/s with an IPDR of 8.5dB and 79% lower power consumption than equivalent all-active switches is reported © 2013 OSA.
Resumo:
A new constitutive model called Methane Hydrate Critical State (MHCS) model was conducted to investigate the geomechanical response of the gas-hydrate-bearing sediments at the Nankai Trough during the wellbore construction process. The strength and dilatancy of gas-hydrate-bearing soil would gradually disappear when the bonds are destroyed because of excessively shearing, which are often observed in dense soils and also in bonded soils such as cemented soil and unsaturated soil. In this study, the MHCS model, which presents such softening features, would be incorporated into a staged-finite-element model in ABAQUS, which mainly considered the loading history of soils and the interaction between cement-casing-formation. This model shows the influence of gas-hydrate-bearing soil to the deformation and stability of a wellbore and the surrounding sediments during wellbore construction. At the same time, the conventional Mohr-Coulomb model was used in the model to show the advantages of MHCS model by comparing the results of the two models.
Resumo:
This article considers constant-pressure autoignition and freely propagating premixed flames of cold methane/air mixtures mixed with equilibrium hot products at high enough dilution levels to burn within the moderate to intense low oxygen dilution (MILD) combustion regime. The analysis is meant to provide further insight on MILD regime boundaries and to identify the effect of hot products speciation. As the mass fraction of hot products in the reactants mixture increases, autoignition occurs earlier. Species profiles show that the products/reactants mixture approximately equilibrates to a new state over a quick transient well before the main autoignition event, but as dilution becomes very high, this equilibration transient becomes more prominent and eventually merges with the primary ignition event. The dilution level at which these two reactive zones merge corresponds well with that marking the transition into the MILD regime, as defined according to conventional criteria. Similarly, premixed flame simulations at high dilutions show evidence of significant reactions involving intermediate species prior to the flame front. Since the premixed flame governing equations system demands that the species and temperature gradients be zero at the "cold" boundary, flame speed cannot be calculated above a certain dilution level. Up to this point, which again agrees reasonably well with the transition into the MILD regime according to convention, the laminar burning velocity was found to increase with hot product dilution while flame thickness remained largely unchanged. Some comments on the MILD combustion regime boundary definition for gas turbine applications are included. Copyright © Taylor & Francis Group, LLC.
Resumo:
Femtosecond laser pulses are used in order to induce dielectric breakdown in gaseous mixtures, namely in some reactive air-methane mixtures. The light emitted from the laser induced plasma was analyzed while the main emission features are identified and assigned. From the analysis of the emission spectra, a linear relationship was found to hold between the intensity of some spectral features and methane content. Finally, the use of femtosecond laser induced breakdown as a tool for the in situ determination of the composition of gaseous mixtures (e.g., equivalence ratio) is also discussed. © 2013 Elsevier B.V. All rights reserved.