145 resultados para Markov chain Monte Carlo methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel framework for identifying and tracking dominant agents in groups. Our proposed approach relies on a causality detection scheme that is capable of ranking agents with respect to their contribution in shaping the system's collective behaviour based exclusively on the agents' observed trajectories. Further, the reasoning paradigm is made robust to multiple emissions and clutter by employing a class of recently introduced Markov chain Monte Carlo-based group tracking methods. Examples are provided that demonstrate the strong potential of the proposed scheme in identifying actual leaders in swarms of interacting agents and moving crowds. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many probabilistic models introduce strong dependencies between variables using a latent multivariate Gaussian distribution or a Gaussian process. We present a new Markov chain Monte Carlo algorithm for performing inference in models with multivariate Gaussian priors. Its key properties are: 1) it has simple, generic code applicable to many models, 2) it has no free parameters, 3) it works well for a variety of Gaussian process based models. These properties make our method ideal for use while model building, removing the need to spend time deriving and tuning updates for more complex algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe models and algorithms for detection and tracking of group and individual targets. We develop two novel group dynamical models, within a continuous time setting, that aim to mimic behavioural properties of groups. We also describe two possible ways of modeling interactions between closely using Markov Random Field (MRF) and repulsive forces. These can be combined together with a group structure transition model to create realistic evolving group models. We use a Markov Chain Monte Carlo (MCMC)-Particles Algorithm to perform sequential inference. Computer simulations demonstrate the ability of the algorithm to detect and track targets within groups, as well as infer the correct group structure over time. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of blind multiuser detection. We adopt a Bayesian approach where unknown parameters are considered random and integrated out. Computing the maximum a posteriori estimate of the input data sequence requires solving a combinatorial optimization problem. We propose here to apply the Cross-Entropy method recently introduced by Rubinstein. The performance of cross-entropy is compared to Markov chain Monte Carlo. For similar Bit Error Rate performance, we demonstrate that Cross-Entropy outperforms a generic Markov chain Monte Carlo method in terms of operation time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algorithms are presented for detection and tracking of multiple clusters of co-ordinated targets. Based on a Markov chain Monte Carlo sampling mechanization, the new algorithms maintain a discrete approximation of the filtering density of the clusters' state. The filters' tracking efficiency is enhanced by incorporating various sampling improvement strategies into the basic Metropolis-Hastings scheme. Thus, an evolutionary stage consisting of two primary steps is introduced: 1) producing a population of different chain realizations, and 2) exchanging genetic material between samples in this population. The performance of the resulting evolutionary filtering algorithms is demonstrated in two different settings. In the first, both group and target properties are estimated whereas in the second, which consists of a very large number of targets, only the clustering structure is maintained. © 2009 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the non-parametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive distributions. We derive both efficient Markov chain Monte Carlo and variational Bayes inference procedures for this model. We apply GPRN as a multiple output regression and multivariate volatility model, demonstrating substantially improved performance over eight popular multiple output (multi-task) Gaussian process models and three multivariate volatility models on benchmark datasets, including a 1000 dimensional gene expression dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the Gaussian Process Density Sampler (GPDS), an exchangeable generative model for use in nonparametric Bayesian density estimation. Samples drawn from the GPDS are consistent with exact, independent samples from a fixed density function that is a transformation of a function drawn from a Gaussian process prior. Our formulation allows us to infer an unknown density from data using Markov chain Monte Carlo, which gives samples from the posterior distribution over density functions and from the predictive distribution on data space. We can also infer the hyperparameters of the Gaussian process. We compare this density modeling technique to several existing techniques on a toy problem and a skullreconstruction task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstruction of an image from a set of projections has been adapted to generate multidimensional nuclear magnetic resonance (NMR) spectra, which have discrete features that are relatively sparsely distributed in space. For this reason, a reliable reconstruction can be made from a small number of projections. This new concept is called Projection Reconstruction NMR (PR-NMR). In this paper, multidimensional NMR spectra are reconstructed by Reversible Jump Markov Chain Monte Carlo (RJMCMC). This statistical method generates samples under the assumption that each peak consists of a small number of parameters: position of peak centres, peak amplitude, and peak width. In order to find the number of peaks and shape, RJMCMC has several moves: birth, death, merge, split, and invariant updating. The reconstruction schemes are tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider Bayesian interpolation and parameter estimation in a dynamic sinusoidal model. This model is more flexible than the static sinusoidal model since it enables the amplitudes and phases of the sinusoids to be time-varying. For the dynamic sinusoidal model, we derive a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment of lost audio and speech packets. © EURASIP, 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel filtering algorithm for tracking multiple clusters of coordinated objects. Based on a Markov chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. For handling complex, possibly large scale scenarios, the sampling efficiency of the basic MCMC scheme is enhanced via the use of a Metropolis within Gibbs particle refinement step. As the proposed methodology essentially involves random set representations, a new type of estimator, termed the probability hypothesis density surface (PHDS), is derived for computing point estimates. It is further proved that this estimator is optimal in the sense of the mean relative entropy. Finally, the algorithm's performance is assessed and demonstrated in both synthetic and realistic tracking scenarios. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibration and acoustic analysis at higher frequencies faces two challenges: computing the response without using an excessive number of degrees of freedom, and quantifying its uncertainty due to small spatial variations in geometry, material properties and boundary conditions. Efficient models make use of the observation that when the response of a decoupled vibro-acoustic subsystem is sufficiently sensitive to uncertainty in such spatial variations, the local statistics of its natural frequencies and mode shapes saturate to universal probability distributions. This holds irrespective of the causes that underly these spatial variations and thus leads to a nonparametric description of uncertainty. This work deals with the identification of uncertain parameters in such models by using experimental data. One of the difficulties is that both experimental errors and modeling errors, due to the nonparametric uncertainty that is inherent to the model type, are present. This is tackled by employing a Bayesian inference strategy. The prior probability distribution of the uncertain parameters is constructed using the maximum entropy principle. The likelihood function that is subsequently computed takes the experimental information, the experimental errors and the modeling errors into account. The posterior probability distribution, which is computed with the Markov Chain Monte Carlo method, provides a full uncertainty quantification of the identified parameters, and indicates how well their uncertainty is reduced, with respect to the prior information, by the experimental data. © 2013 Taylor & Francis Group, London.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.