99 resultados para Markov Model Estimation
Resumo:
Reinforcement techniques have been successfully used to maximise the expected cumulative reward of statistical dialogue systems. Typically, reinforcement learning is used to estimate the parameters of a dialogue policy which selects the system's responses based on the inferred dialogue state. However, the inference of the dialogue state itself depends on a dialogue model which describes the expected behaviour of a user when interacting with the system. Ideally the parameters of this dialogue model should be also optimised to maximise the expected cumulative reward. This article presents two novel reinforcement algorithms for learning the parameters of a dialogue model. First, the Natural Belief Critic algorithm is designed to optimise the model parameters while the policy is kept fixed. This algorithm is suitable, for example, in systems using a handcrafted policy, perhaps prescribed by other design considerations. Second, the Natural Actor and Belief Critic algorithm jointly optimises both the model and the policy parameters. The algorithms are evaluated on a statistical dialogue system modelled as a Partially Observable Markov Decision Process in a tourist information domain. The evaluation is performed with a user simulator and with real users. The experiments indicate that model parameters estimated to maximise the expected reward function provide improved performance compared to the baseline handcrafted parameters. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we consider Bayesian interpolation and parameter estimation in a dynamic sinusoidal model. This model is more flexible than the static sinusoidal model since it enables the amplitudes and phases of the sinusoids to be time-varying. For the dynamic sinusoidal model, we derive a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment of lost audio and speech packets. © EURASIP, 2010.
Resumo:
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation. The major difficulties, including load torque estimation and separation of pressure profile from adjacent-firing cylinders, are addressed in this work and solutions to each problem are given respectively. The experimental results conducted on a multi-cylinder diesel engine have shown that the proposed method successfully estimate a more accurate cylinder pressure over a wider range of crankshaft angles. Copyright © 2012 SAE International.
Resumo:
We present the Gaussian process density sampler (GPDS), an exchangeable generative model for use in nonparametric Bayesian density estimation. Samples drawn from the GPDS are consistent with exact, independent samples from a distribution defined by a density that is a transformation of a function drawn from a Gaussian process prior. Our formulation allows us to infer an unknown density from data using Markov chain Monte Carlo, which gives samples from the posterior distribution over density functions and from the predictive distribution on data space. We describe two such MCMC methods. Both methods also allow inference of the hyperparameters of the Gaussian process.
Discriminative language model adaptation for Mandarin broadcast speech transcription and translation
Resumo:
This paper investigates unsupervised test-time adaptation of language models (LM) using discriminative methods for a Mandarin broadcast speech transcription and translation task. A standard approach to adapt interpolated language models to is to optimize the component weights by minimizing the perplexity on supervision data. This is a widely made approximation for language modeling in automatic speech recognition (ASR) systems. For speech translation tasks, it is unclear whether a strong correlation still exists between perplexity and various forms of error cost functions in recognition and translation stages. The proposed minimum Bayes risk (MBR) based approach provides a flexible framework for unsupervised LM adaptation. It generalizes to a variety of forms of recognition and translation error metrics. LM adaptation is performed at the audio document level using either the character error rate (CER), or translation edit rate (TER) as the cost function. An efficient parameter estimation scheme using the extended Baum-Welch (EBW) algorithm is proposed. Experimental results on a state-of-the-art speech recognition and translation system are presented. The MBR adapted language models gave the best recognition and translation performance and reduced the TER score by up to 0.54% absolute. © 2007 IEEE.
Resumo:
We present methods for fixed-lag smoothing using Sequential Importance sampling (SIS) on a discrete non-linear, non-Gaussian state space system with unknown parameters. Our particular application is in the field of digital communication systems. Each input data point is taken from a finite set of symbols. We represent transmission media as a fixed filter with a finite impulse response (FIR), hence a discrete state-space system is formed. Conventional Markov chain Monte Carlo (MCMC) techniques such as the Gibbs sampler are unsuitable for this task because they can only perform processing on a batch of data. Data arrives sequentially, so it would seem sensible to process it in this way. In addition, many communication systems are interactive, so there is a maximum level of latency that can be tolerated before a symbol is decoded. We will demonstrate this method by simulation and compare its performance to existing techniques.
Resumo:
In this paper methods are developed for enhancement and analysis of autoregressive moving average (ARMA) signals observed in additive noise which can be represented as mixtures of heavy-tailed non-Gaussian sources and a Gaussian background component. Such models find application in systems such as atmospheric communications channels or early sound recordings which are prone to intermittent impulse noise. Markov Chain Monte Carlo (MCMC) simulation techniques are applied to the joint problem of signal extraction, model parameter estimation and detection of impulses within a fully Bayesian framework. The algorithms require only simple linear iterations for all of the unknowns, including the MA parameters, which is in contrast with existing MCMC methods for analysis of noise-free ARMA models. The methods are illustrated using synthetic data and noise-degraded sound recordings.
Resumo:
This work addresses the problem of estimating the optimal value function in a Markov Decision Process from observed state-action pairs. We adopt a Bayesian approach to inference, which allows both the model to be estimated and predictions about actions to be made in a unified framework, providing a principled approach to mimicry of a controller on the basis of observed data. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from theposterior distribution over the optimal value function. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.
An overview of sequential Monte Carlo methods for parameter estimation in general state-space models
Resumo:
Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, are numerical techniques based on Importance Sampling for solving the optimal state estimation problem. The task of calibrating the state-space model is an important problem frequently faced by practitioners and the observed data may be used to estimate the parameters of the model. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed for this task accompanied with a discussion of their advantages and limitations.
Resumo:
Using an entropy argument, it is shown that stochastic context-free grammars (SCFG's) can model sources with hidden branching processes more efficiently than stochastic regular grammars (or equivalently HMM's). However, the automatic estimation of SCFG's using the Inside-Outside algorithm is limited in practice by its O(n3) complexity. In this paper, a novel pre-training algorithm is described which can give significant computational savings. Also, the need for controlling the way that non-terminals are allocated to hidden processes is discussed and a solution is presented in the form of a grammar minimization procedure. © 1990.
Resumo:
In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probability densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.
Resumo:
In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probabilitiy densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.
Resumo:
In this paper, a Decimative Spectral estimation method based on Eigenanalysis and SVD (Singular Value Decomposition) is presented and applied to speech signals in order to estimate Formant/Bandwidth values. The underlying model decomposes a signal into complex damped sinusoids. The algorithm is applied not only on speech samples but on a small amount of the autocorrelation coefficients of a speech frame as well, for finer estimation. Correct estimation of Formant/Bandwidth values depend on the model order thus, the requested number of poles. Overall, experimentation results indicate that the proposed methodology successfully estimates formant trajectories and their respective bandwidths.
An overview of Sequential Monte Carlo methods for parameter estimation in general state-space models
Resumo:
Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, provide very good numerical approximations to the associated optimal state estimation problems. However, in many scenarios, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard SMC methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed to perform static parameter estimation in general state-space models. We discuss the advantages and limitations of these methods. © 2009 IFAC.
Resumo:
Model based compensation schemes are a powerful approach for noise robust speech recognition. Recently there have been a number of investigations into adaptive training, and estimating the noise models used for model adaptation. This paper examines the use of EM-based schemes for both canonical models and noise estimation, including discriminative adaptive training. One issue that arises when estimating the noise model is a mismatch between the noise estimation approximation and final model compensation scheme. This paper proposes FA-style compensation where this mismatch is eliminated, though at the expense of a sensitivity to the initial noise estimates. EM-based discriminative adaptive training is evaluated on in-car and Aurora4 tasks. FA-style compensation is then evaluated in an incremental mode on the in-car task. © 2011 IEEE.