64 resultados para Localization accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localization of chess-board vertices is a common task in computer vision, underpinning many applications, but relatively little work focusses on designing a specific feature detector that is fast, accurate and robust. In this paper the 'Chess-board Extraction by Subtraction and Summation' (ChESS) feature detector, designed to exclusively respond to chess-board vertices, is presented. The method proposed is robust against noise, poor lighting and poor contrast, requires no prior knowledge of the extent of the chess-board pattern, is computationally very efficient, and provides a strength measure of detected features. Such a detector has significant application both in the key field of camera calibration, as well as in structured light 3D reconstruction. Evidence is presented showing its superior robustness, accuracy, and efficiency in comparison to other commonly used detectors, including Harris & Stephens and SUSAN, both under simulation and in experimental 3D reconstruction of flat plate and cylindrical objects. © 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer printing of 2 μm-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150 nm (±14 nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 × 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486 nm with a forward-directed optical output power up to 80 μW (355 mW/cm 2) when operated at a current density of 20 A/cm2. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian Approximation Potential (GAP) framework, fitted to a database of first principles density functional theory (DFT) calculations. We investigate the performance of a sequence of models based on databases of increasing coverage in configuration space and showcase our strategy of choosing representative small unit cells to train models that predict properties only observable using thousands of atoms. The most comprehensive model is then used to calculate properties of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation interaction. All software and raw data are available at www.libatoms.org.