76 resultados para Inverse filtering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An implementation of the inverse vector Jiles-Atherton model for the solution of non-linear hysteretic finite element problems is presented. The implementation applies the fixed point method with differential reluctivity values obtained from the Jiles-Atherton model. Differential reluctivities are usually computed using numerical differentiation, which is ill-posed and amplifies small perturbations causing large sudden increases or decreases of differential reluctivity values, which may cause numerical problems. A rule based algorithm for conditioning differential reluctivity values is presented. Unwanted perturbations on the computed differential reluctivity values are eliminated or reduced with the aim to guarantee convergence. Details of the algorithm are presented together with an evaluation of the algorithm by a numerical example. The algorithm is shown to guarantee convergence, although the rate of convergence depends on the choice of algorithm parameters. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unscented Kalman filter (UKF) is a widely used method in control and time series applications. The UKF suffers from arbitrary parameters necessary for sigma point placement, potentially causing it to perform poorly in nonlinear problems. We show how to treat sigma point placement in a UKF as a learning problem in a model based view. We demonstrate that learning to place the sigma points correctly from data can make sigma point collapse much less likely. Learning can result in a significant increase in predictive performance over default settings of the parameters in the UKF and other filters designed to avoid the problems of the UKF, such as the GP-ADF. At the same time, we maintain a lower computational complexity than the other methods. We call our method UKF-L. © 2011 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synapses exhibit an extraordinary degree of short-term malleability, with release probabilities and effective synaptic strengths changing markedly over multiple timescales. From the perspective of a fixed computational operation in a network, this seems like a most unacceptable degree of added variability. We suggest an alternative theory according to which short-term synaptic plasticity plays a normatively-justifiable role. This theory starts from the commonplace observation that the spiking of a neuron is an incomplete, digital, report of the analog quantity that contains all the critical information, namely its membrane potential. We suggest that a synapse solves the inverse problem of estimating the pre-synaptic membrane potential from the spikes it receives, acting as a recursive filter. We show that the dynamics of short-term synaptic depression closely resemble those required for optimal filtering, and that they indeed support high quality estimation. Under this account, the local postsynaptic potential and the level of synaptic resources track the (scaled) mean and variance of the estimated presynaptic membrane potential. We make experimentally testable predictions for how the statistics of subthreshold membrane potential fluctuations and the form of spiking non-linearity should be related to the properties of short-term plasticity in any particular cell type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of system identification is more robust than finding point estimates of a parametric function representation. Our principled filtering/smoothing approach for GP dynamic systems is based on analytic moment matching in the context of the forward-backward algorithm. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inherent trade-off exists in simulation model development and employment: a trade-off between the level of detail simulated and the simulation models computational cost. It is often desirable to simulate a high level of detail to a high degree of accuracy. However, due to the nature of design optimisation, which requires a large number of design evaluations, the application of such simulation models can be prohibitively expensive. A induction motor modelling approache to reduce the computational cost while maintaining a high level of detail and accuracy in the final design is presented. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the nonlinear analog of the Fake Riccati equation developed for linear systems, we derive an inverse optimality result for several receding-horizon control schemes. This inverse optimality result unifies stability proofs and shows that receding-horizon control possesses the stability margins of optimal control laws. © 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomagnetic structures have the potential to surpass silicon's scaling limitations both as elements in hybrid CMOS logic and as novel computational elements. Magnetic force microscopy (MFM) offers a convenient characterization technique for use in the design of such nanomagnetic structures. MFM measures the magnetic field and not the sample's magnetization. As such the question of the uniqueness of the relationship between an external magnetic field and a magnetization distribution is a relevant one. To study this problem we present a simple algorithm which searches for magnetization distributions consistent with an external magnetic field and solutions to the micromagnetic equations' qualitative features. The algorithm is not computationally intensive and is found to be effective for our test cases. On the basis of our results we propose a systematic approach for interpreting MFM measurements.