86 resultados para Intellectual Task Solver
Resumo:
Raising design quality and value in the built environment requires continuous improvement, drawing on feedback from clients or occupiers and other industry players. The challenging task for architectural and engineering designers has always been to use their intellectual knowledge to deliver both forms of benefits, tangibles and intangibles, in the built environment. Increasingly as clients demand best value for money, there is a greater need to understand the potential from intangibles, to see projects not as ends in themselves but as means to improved quality of life and wealth creation. As we begin to understand more about how - through the design of the built environment - to deliver these improvements in outcomes, clients will be better placed to expect their successful delivery from designers, and designers themselves will be better placed to provide them. This paper discusses cross-disciplinary issues about intangibles and is aimed at designers, clients, investors and entrepreneurs within the built environment. It presents some findings from a minuscule study that investigated intangible benefits in a new primary school. © 2004 IEEE.
Resumo:
The paper is devoted to extending the new efficient frequency-domain method of adjoint Green's function calculation to curvilinear multi-block RANS domains for middle and farfield sound computations. Numerical details of the method such as grids, boundary conditions and convergence acceleration are discussed. Two acoustic source models are considered in conjunction with the method and acoustic modelling results are presented for a benchmark low-Reynolds-number jet case.
Resumo:
This paper proposes a movement trajectory planning model, which is a maximum task achievement model in which signal-dependent noise is added to the movement command. In the proposed model, two optimization criteria are combined, maximum task achievement and minimum energy consumption. The proposed model has the feature that the end-point boundary conditions for position, velocity, and acceleration need not be prespecified. Consequently, the method can be applied not only to the simple point-to-point movement, but to any task. In the method in this paper, the hand trajectory is derived by a psychophysical experiment and a numerical experiment for the case in which the target is not stationary, but is a moving region. It is shown that the trajectory predicted from the minimum jerk model or the minimum torque change model differs considerably from the results of the psychophysical experiment. But the trajectory predicted from the maximum task achievement model shows good qualitative agreement with the hand trajectory obtained from the psychophysical experiment. © 2004 Wiley Periodicals, Inc.
Resumo:
A new three-dimensional Navier-Stokes solver for flows in turbomachines has been developed. The new solver is based on the latest version of the Denton codes, but has been implemented to run on Graphics Processing Units (GPUs) instead of the traditional Central Processing Unit (CPU). The change in processor enables an order-of-magnitude reduction in run-time due to the higher performance of the GPU. Scaling results for a 16 node GPU cluster are also presented, showing almost linear scaling for typical turbomachinery cases. For validation purposes, a test case consisting of a three-stage turbine with complete hub and casing leakage paths is described. Good agreement is obtained with previously published experimental results. The simulation runs in less than 10 minutes on a cluster with four GPUs. Copyright © 2009 by ASME.
Resumo:
For many realistic scenarios, there are multiple factors that affect the clean speech signal. In this work approaches to handling two such factors, speaker and background noise differences, simultaneously are described. A new adaptation scheme is proposed. Here the acoustic models are first adapted to the target speaker via an MLLR transform. This is followed by adaptation to the target noise environment via model-based vector Taylor series (VTS) compensation. These speaker and noise transforms are jointly estimated, using maximum likelihood. Experiments on the AURORA4 task demonstrate that this adaptation scheme provides improved performance over VTS-based noise adaptation. In addition, this framework enables the speech and noise to be factorised, allowing the speaker transform estimated in one noise condition to be successfully used in a different noise condition. © 2011 IEEE.
Resumo:
Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.
Resumo:
Iteration is unavoidable in the design process and should be incorporated when planning and managing projects in order to minimize surprises and reduce schedule distortions. However, planning and managing iteration is challenging because the relationships between its causes and effects are complex. Most approaches which use mathematical models to analyze the impact of iteration on the design process focus on a relatively small number of its causes and effects. Therefore, insights derived from these analytical models may not be robust under a broader consideration of potential influencing factors. In this article, we synthesize an explanatory framework which describes the network of causes and effects of iteration identified from the literature, and introduce an analytic approach which combines a task network modeling approach with System Dynamics simulation. Our approach models the network of causes and effects of iteration alongside the process architecture which is required to analyze the impact of iteration on design process performance. We show how this allows managers to assess the impact of changes to process architecture and to management levers which influence iterative behavior, accounting for the fact that these changes can occur simultaneously and can accumulate in non-linear ways. We also discuss how the insights resulting from this analysis can be visualized for easier consumption by project participants not familiar with simulation methods. Copyright © 2010 by ASME.
Resumo:
Motor task variation has been shown to be a key ingredient in skill transfer, retention, and structural learning. However, many studies only compare training of randomly varying tasks to either blocked or null training, and it is not clear how experiencing different nonrandom temporal orderings of tasks might affect the learning process. Here we study learning in human subjects who experience the same set of visuomotor rotations, evenly spaced between -60° and +60°, either in a random order or in an order in which the rotation angle changed gradually. We compared subsequent learning of three test blocks of +30°→-30°→+30° rotations. The groups that underwent either random or gradual training showed significant (P < 0.01) facilitation of learning in the test blocks compared with a control group who had not experienced any visuomotor rotations before. We also found that movement initiation times in the random group during the test blocks were significantly (P < 0.05) lower than for the gradual or the control group. When we fit a state-space model with fast and slow learning processes to our data, we found that the differences in performance in the test block were consistent with the gradual or random task variation changing the learning and retention rates of only the fast learning process. Such adaptation of learning rates may be a key feature of ongoing meta-learning processes. Our results therefore suggest that both gradual and random task variation can induce meta-learning and that random learning has an advantage in terms of shorter initiation times, suggesting less reliance on cognitive processes.
Resumo:
The modern CFD process consists of mesh generation, flow solving and post-processing integrated into an automated workflow. During the last several years we have developed and published research aimed at producing a meshing and geometry editing system, implemented in an end-to-end parallel, scalable manner and capable of automatic handling of large scale, real world applications. The particular focus of this paper is the associated unstructured mesh RANS flow solver and the porting of it to GPU architectures. After briefly describing the solver itself, the special issues associated with porting codes using unstructured data structures are discussed - followed by some application examples. Copyright © 2011 by W.N. Dawes.
Resumo:
This paper shows that film bulk acoustic resonator (FBAR) arrays can be very useful sensors either to detect physical parameters such as temperature and pressure directly or to detect bio-chemicals with extremely high sensitivities by incorporating a chemisorption layer or bio-probe molecules. Furthermore, it also shows that surface acoustic wave devices can be integrated with a FBAR sensor array on the same piezoelectric substrate as the microfluidics systems to perform transportation and mixing of biosamples etc. demonstrating the possibility to fabricate integrated lab-on-a-chip detection systems, in which all the actuators and sensors are operated by acoustic wave devices. This makes the detection system simple, low cost and easy to operate and hence has great commercial potential. © 2011 Inderscience Enterprises Ltd.
RE-DESIGNING PD PROCESS ARCHITECTURE BY TRANSFORMING TASK NETWORK MODELS INTO SYSTEM DYNAMICS MODELS