77 resultados para Hydraulic transmissions.
Resumo:
This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.
Resumo:
Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. This inherent buoyancy may cause lightweight structures to float when the soil liquefies. Centrifuge tests have been carried out to study the excess pore pressure generation and dissipation in liquefiable soils. In these tests, near full liquefaction conditions were attained within a few cycles of the earthquake loading. In the case of high hydraulic conductivity sands, significant dissipation could take place even during the earthquake loading which inhibits full liquefaction from occurring. In the case of excess pore pressure generation and dissipation around a floating structure, the cyclic response of the structure may lead to the reduction in excess pore pressure near the face of the structure as compared to the far field. This reduction in excess pore pressure is due to shear-induced dilation and suction pressures arising from extensile stresses at the soil-structure interface. Given the lower excess pore pressure around the structure; the soil around the structure retains a portion of this shear strength which in turn can discourage significant uplift of the underground structure. Copyright © 2012, IGI Global.
Resumo:
Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone "sandwiched" between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.
Resumo:
This paper reports on an investigation into fuel design choices of a pressurized water reactor operating in a self-sustainable Th- 233U fuel cycle. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. The calculations were carried out with Monte-Carlo based BGCore code system and the results were compared to those obtained with Serpent Monte-Carlo code and deterministic transport code BOXER. One of the major design challenges associated with the SB concept is high power peaking due to the high concentration of fissile material in the seed region. The second objective of this work is to estimate the maximum achievable core power density by evaluation of limiting thermal hydraulic parameters. The analysis showed that both fuel assembly designs have a potential of achieving net breeding. Although hexagonal lattice was found to be somewhat more favorable because it allows achieving higher power density, while having breeding performance comparable to the square lattice case. © Carl Hanser Verlag München.
Resumo:
Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge. It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of approximately 70 °C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20 °C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50 °C may be cut off. The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.
Resumo:
A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with 235U is necessary, and the 235U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO
Resumo:
Cement-bentonite (CB) cutoff walls have long been used to control ground water flow and contaminant migration at polluted sites. Hydraulic conductivity and unconfined compressive strength are two short-term properties often used by industry and owners in CB specification and are important parameters discussed in this paper. For polluted sites, long-term compatibility is also an important issue. These properties are coupled to a number of external factors including the mix design, construction sequence, presence/absence of contaminants at the site. Additional short-term properties for engineering assessment include the stressstrain characteristics in both drained and undrained shear in both with and without confinement as well as one-dimensional consolidation properties. Long term CB properties are affected by aging, reaction chemistry, drying, in situ stress state, and interaction with the polluted environment. © 2013 Taylor & Francis Group.
Resumo:
During strong earthquakes, significant excess pore pressures can develop in saturated soils. After shaking ceases, the dissipation of these pressures can cause significant soil settlement, creating downward-acting frictional loads on piled foundations. Additionally, if the piles do not support the full axial load at the end of shaking, then the proportion of the superstructure's vertical loading carried by the piles may change as a result of the soil settlement, further altering the axial load distribution on piles as the soil consolidates. In this paper, the effect of hydraulic conductivity and initial post-shaking pile head loading is investigated in terms of the changing axial load distribution and settlement responses. The investigation is carried out by considering the results from four dynamic centrifuge experiments in which a 2 × 2 pile group was embedded in a two-layer profile and subjected to strong shaking. It is found that large contrasts in hydraulic conductivity between the two layers of the soil model affected both the pile group settlements and axial load distribution. Both these results stem from the differences in excess pore pressure dissipation, part of which took place very rapidly when the underlying soil layer had a large hydraulic conductivity.
Resumo:
Shallow foundations built on saturated deposits of granular soils in seismically active areas are, regardless of their static bearing capacity, critical structures during seismic events. A single centrifuge experiment involving shallow foundations situated atop a liquefiable soil deposit has been performed to identify the mechanisms involved in the interaction between liquefaction-induced effects on neighboring shallow foundations. Centrifuge test results indicate that liquefaction causes significant settlements of footings, which are affected by the presence of neighboring foundations and can be extremely damaging to the superstructure. The understanding of these interaction effects is very important, mainly in densely populated urban areas. The development of high excess pore-pressures, localized drainage in response to the high transient hydraulic gradients, and earthquake-induced vertical motions to the footings are also important effects that are discussed to assist in enhancing current understanding and ability to predict liquefaction effects on shallow foundations. © 2014 Taylor & Francis Group.
Resumo:
A high-speed path-following controller for long combination vehicles (LCVs) was designed and implemented on a test vehicle consisting of a rigid truck towing a dolly and a semitrailer. The vehicle was driven through a 3.5 m wide lane change maneuver at 80 km/h. The axles of the dolly and trailer were steered actively by electrically-controlled hydraulic actuators. Substantial performance benefits were recorded compared with the unsteered vehicle. For the best controller weightings, performance improvements relative to unsteered case were: lateral tracking error 75% reduction, rearward amplification (RA) of lateral acceleration 18% reduction, and RA of yaw rate 37% reduction. This represents a substantial improvement in stability margins. The system was found to work well in conjunction with the braking-based stability control system of the towing vehicle with no negative interaction effects being observed. In all cases, the stability control system and the steering system improved the yaw stability of the combination. © 2014 by ASME.
Resumo:
Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.
Resumo:
The notch and strain rate sensitivity of non-crimp glass fibre/vinyl-ester laminates subjected to uniaxial tensile loads has been investigated experimentally. Two sets of notch configurations were tested; one where circular holes were drilled and another where fragment simulating projectiles were fired through the plate creating a notch. Experiments were conducted for strain rates ranging from 10-4 s-1 to 102 s-1 using servo hydraulic machines. A significant increase in strength with increasing strain rate was observed for both notched and un-notched specimens. High speed photography revealed changes in failure mode, for certain laminate configurations, as the strain rate increased. The tested laminate configurations showed fairly small notch sensitivity for the whole range of strain rates. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
The notch and strain rate sensitivity of non-crimp glass fibre/vinyl-ester laminates subjected to uniaxial tensile loads has been investigated experimentally. Two set of notch configurations were tested; one where circular holes were drilled and another where fragment simulating projectiles were fired through the plate creating a notch. Experiments were conducted for strain rates ranging from 10-4/s to 102/s using servo hydraulic machines. A significant increase in strength with increasing strain rate was observed for both notched and unnotched specimens. High speed photography revealed changes in failure mode, for certain laminate configurations, as the strain rate increased. The tested laminate configurations showed fairly small notch sensitivity for the whole range of strain rates.
Resumo:
Hydraulic fracturing in clayey soils can be triggered by either tensile or shear failure. In this paper, the physical meanings of various equations to predict fracture initiation pressure proposed in the past are discussed using the cavity expansion theory. In particular, when fracturing pressure is plotted against initial confining pressure, published laboratory test results as well as analytical models show a linear relationship. When the slope is close to 2, fracture is initiated by tensile failure of the clay, whereas when the slope is close to 1, it is initiated by shear failure of the clay. In this study, the analytical models, validated only on laboratory test data to date, were applied to unique data from field grouting work in which extensive soil fracturing was carried out to improve the mechanical characteristics of the soft silty clay underlying a bell tower in Venice, Italy. By a careful assessment of initial confining pressure in the field, the variation in recorded injection pressures with confining pressure was examined. Results suggest that the fractures at this site were likely to be initiated by shear failure of the clay, and the values were similar to what was predicted by the model with the shear failure criterion. © 2013 American Society of Civil Engineers.