88 resultados para Highly enantiomerically enriched amines
Resumo:
An integrated multiwavelength grating cavity (MGC) laser fabricated by selective area regrowth is demonstrated. In addition to allowing wavelength conversion, the device can perform various important network functions such as space switching and multiplexing. The use of the device for these functions offers several advantages from a wavelength division multiplexing (WDM) network, such as flexibility, reduced component count, size, and the associated cost reduction.
Resumo:
A detailed experimental investigation was conducted into the interaction of a converted wake and a separation bubble on the rear suction surface of a highly loaded low-pressure (LP) turbine blade. Boundary layer measurements, made with 2D LDA, revealed a new transition mechanism resulting from this interaction. Prior to the arrival of the wake, the boundary layer profiles in the separation region are inflexional. The perturbation of the separated shear layer caused by the converting wake causes an inviscid Kelvin-Helmholtz rollup of the shear layer. This results in the breakdown of the laminar shear layer and a rapid wake-induced transition in the separated shear layer.
The effects of a trip wire and unsteadiness on a high speed highly loaded low-pressure turbine blade
Resumo:
This paper presents the effect of a single spanwise 2D wire upon the downstream position of boundary layer transition under steady and unsteady inflow conditions. The study is carried out on a high turning, high-speed, low pressure turbine (LPT) profile designed to take account of the unsteady flow conditions. The experiments were carried out in a transonic cascade wind tunnel to which a rotating bar system had been added. The range of Reynolds and Mach numbers studied includes realistic LPT engine conditions and extends up to the transonic regime. Losses are measured to quantify the influence of the roughness with and without wake passing. Time resolved measurements such as hot wire boundary layer surveys and surface unsteady pressure are used to explain the state of the boundary layer. The results suggest that the effect of roughness on boundary layer transition is a stability governed phenomena, even at high Mach numbers. The combination of the effect of the roughness elements with the inviscid Kelvin-Helmholtz instability responsible for the rolling up of the separated shear layer (Stieger [1]) is also examined. Wake traverses using pneumatic probes downstream of the cascade reveal that the use of roughness elements reduces the profile losses up to exit Mach numbers of 0.8. This occurs with both steady and unsteady inflow conditions.
Resumo:
This paper presents the analysis and design of a new low power and highly linear mixer topology based on a newly reported differential derivative superposition method. Volterra series and harmonic balance are employed to investigate its linearisation mechanism and to optimise the design. A prototype mixer has been designed and is being implemented in 0.18μm CMOS technology. Simulation shows this mixer achieves 19.7dBm IIP3 with 10.5dB conversion gain, 13.2dB noise figure at 2.4GHz and only 3.8mW power consumption. This performance is competitive with already reported mixers.
Resumo:
The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Incineration, and virtual elimination, of waste stockpiles is possible in a thorium (Th) fuelled critical or subcritical fast reactor. Fuel cycles producing a net decrease in TRUs are possible in conventional pressurised water reactors (PWRs). However, minor actinides (MAs) have a detrimental effect on reactivity and stability, ultimately limiting the quality and quantity of waste that can be incinerated. In this paper, we propose using a thorium-retained-actinides fuel cycle in PWRs, where the reactor is fuelled with a mixture of thorium and TRU waste, and after discharge all actinides are reprocessed and returned to the reactor. To investigate the feasibility and performance of this fuel cycle an assembly-level analysis for a one-batch reloading strategy was completed over 125 years of operation using WIMS 9. This one-batch analysis was performed for simplicity, but allowed an indicative assessment of the performance of a four-batch fuel management strategy. The build-up of 233U in the reactor allowed continued reactive and stable operation, until all significant actinide populations had reached pseudo-equilibrium in the reactor. It was therefore possible to achieve near-complete transuranic waste incineration, even for fuels with significant MA content. The average incineration rate was initially around 330 kg per GW th year and tended towards 250 kg per GW th year over several decades: a performance comparable to that achieved in a fast reactor. Using multiple batch fuel management, competitive or improved end-of-cycle burn-up appears achievable. The void coefficient (VC), moderator temperature coefficient (MTC) and Doppler coefficient remained negative. The quantity of soluble boron required for a fixed fuel cycle length was comparable to that for enriched uranium fuel, and acceptable amounts can be added without causing a positive VC or MTC. This analysis is limited by the consideration of a single fuel assembly, and it will be necessary to perform a full core coupled neutronic-thermal-hydraulic analysis to determine if the design in its current form is feasible. In particular, the potential for positive VCs if the core is highly or locally voided is a cause for concern. However, these results provide a compelling case for further work on concept feasibility and fuel management, which is in progress. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We report on the growth of single-walled carbon nanotubes from a monometallic Co catalyst on an oxidized Si wafer support by the most simple growth recipe (vacuum annealing, growth by undiluted C 2H 2). Nevertheless, multiwavelength Raman spectroscopy and transmission electron spectroscopy show a remarkable selectivity for chiral indices and thus, e.g., high abundance with a single chirality representing 58% of all semiconducting tubes. In situ x-ray photoelectron spectroscopy monitors the catalyst chemistry during carbon nanotube growth and shows interfacial Co-Si interactions that may help to stabilize the nanoparticle/nanotube diameter. We outline a two-mechanism model explaining the selective growth. © 2012 American Physical Society.
Resumo:
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
We present experimental results on the bulk flexoelectric coefficients e and effective elastic coefficients K of non-symmetric bimesogenic liquid crystals when the number of terminal and lateral fluoro substituents is increased. These coefficients are of importance because the flexoelastic ratio e/K governs the magnitude of flexoelectro-optic switching in chiral nematic liquid crystals. The study is carried out for two different types of linkage in the flexible spacer chain that connects the separate mesogenic units: these are either an ether or an ester unit. It is found that increasing the number of fluorine atoms on the mesogenic units typically leads to a small increase in e and a decrease in K, resulting in an enhancement of e/K. The most dramatic increase in e/K, however, is observed when the linking group is changed from ether to ester units, which can largely be attributed to an increase in e. Increasing the number of fluorine atoms does, however, increase the viscoelastic ratio and therefore leads to a concomitant increase in the response time. This is observed for both types of linkage, although the ester-linked compounds exhibit smaller viscoelastic ratios compared with their ether-linked counterparts. Highly fluorinated ester-linked compounds are also found to exhibit lower transition temperatures and dielectric anisotropies. As a result, these compounds are promising materials for use in electro-optic devices.