70 resultados para High-frequency data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8GHz), allowing low-cost programmable high-frequency resonators. © 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of enhancing the frequency performance of electrochemical capacitors by tailoring the nanostructure of the carbon electrode to increase electrolyte permeability is demonstrated. Highly porous, vertically oriented carbon electrodes which are in direct electrical contact with the metallic current collector are produced via MPECVD growth on metal foils. The resulting structure has a capacitance and frequency performance between that of an electrolytic capacitor and an electrochemical capacitor. Fully packaged devices are produced on Ni and Cu current collectors and performance compared to state-of-the-art electrochemical capacitors and electrolytic capacitors. The extension of capacitive behavior to the AC regime (100 Hz) opens up an avenue for a number of new applications where physical volume of the capacitor may be significantly reduced. © 2014 Pritesh Hiralal et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling the noise originating from a landing gear has proven to be a challenging task, because of its complicated structure. In full-scale, landing gear noise can only be investigated experimentally by source localization techniques and fly-over measurements with microphone arrays. In the present work, measurements of a Boeing B747-400 were used to determine the contribution of the landing gear to the overall noise emitted during a fly-over and how the broadband noise from the landing gear scales with the flight velocity. A tonal source from the nose landing gear was identified at 380 Hz with a harmonic at 760 Hz and it most likely originates from a cavity. It was also found that the Power Spectral Density (PSD) of the high frequency broadband component varies linearly with frequency and there is some scaling with the ow velocity. Finally, the nose landing gear was shown to be a significant contributor to the overall airframe noise as expected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generation of sound by turbulent boundary-layer flow at low Mach number over a rough wall is investigated by applying a theoretical model that describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of far-field radiated roughness noise. Models for the source statistics are obtained by scaling smooth-wall data by the increased skin friction velocity and boundary-layer thickness for a rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibit reasonable agreement with the predicted level. Estimates of the roughness noise for a Boeing 757 sized aircraft wing with idealized levels of surface roughness show that hi the high-frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels are observed for the roughness noise. The trailing edge noise is also enhanced by surface roughness somewhat A parametric study indicates that roughness height and roughness density significantly affect the roughness noise with roughness height having the dominant effect The roughness noise directivity varies with different levels of surface roughness. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generation of sound by turbulent boundary layer flow at low Mach number over a rough wall is investigated by applying the theoretical model which describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of the roughness noise radiated to far field. Empirical models for the source statistics are obtained by scaling smooth-wall data through increased skin friction velocity and boundary layer thickness for the rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet by four 1/2'' free-field condenser microphones. The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibits encouraging agreement with the predicted spectra. Also, a phased microphone array is utilized to localize the sound source, and it confirms that the rough plates generate higher source strengthes in this frequency range. A parametric study illustrates that the roughness height and roughness density significantly affect the far-field radiated roughness noise with the roughness height having the dominant effect. The estimates of the roughness noise for a Boeing 757 sized aircraft wing show that in high frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels for the roughness noise are also observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The usage of subcarrier multiplexing (SCM) techniques to allow link transmission in excess of the specified fiber bandwidth is described. A series of 200-Mbit/s channels with carrier frequencies of up to more than twenty times the 3-dB fiber bandwidth have been successfully used, the maximum being limited by the available electronics. To assess the transmission of the fiber, digitally modulated channels are placed on high frequency carrier signals and then used to modulate a vertical-cavity surface-emitting lasers (VCSEL).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fabrication of high frequency acoustic wave devices requires thedevelopment of thin films of piezoelectric materials with improved morphologicaland electro-acoustical properties. In particular, the crystalline orientationof the films, surface morphology, film stress and electrical resistivity are keyissues for the piezoelectric response. In the work reported here, ZnO thinfilms were deposited at high rates (>50 nm/min) using a novel process knownas the High Target Utilisation Sputtering (HiTUS). The films deposited possessexcellent crystallographic orientation, high resistivity (>109ωm), and exhibit surface roughness and film stress one order of magnitudelower than films grown with standard magnetron sputtering. The electromechanicalcoupling coefficient of the films, kT, was precisely calculated byimplementing the resonant spectrum method, and was found to be at least 6%higher than any previously reported kT of magnetron sputtered filmsto the Authors' knowledge. The low film stress of the film is deemed as one ofthe most important factors responsible for the high k T valueobtained. © 2010 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design and manufacture of a prototype chip level power supply is described, with both simulated and experimental results. Of particular interest is the inclusion of a fully integrated on-chip LC filter. A high switching frequency of 660MHz and the design of a device drive circuit reduce losses by supply stacking, low-swing signaling and charge recycling. The paper demonstrates that a chip level converter operating at high frequency can be built and shows how this can be achieved, using zero voltage switching techniques similar to those commonly used in larger converters. Both simulations and experimental data from a fabricated circuit in 0.18μm CMOS are included. The circuit converts 2.2V to 0.75∼1.0V at ∼55mA. ©2008 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a long range and effectively error-free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system. The system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. The novel technique is first theoretically modelled using a Rician fading channel. It is shown that conventional RFID systems suffer from multi-path fading resulting in nulls in radio environments. We, for the first time, demonstrate that the nulls can be moved around by varying the phase and frequency of the interrogation signals in a multi-antenna system. As a result, much enhanced coverage can be achieved. A proof of principle prototype RFID system is built based on an Impinj R2000 transceiver. The demonstrator system shows that the new approach improves the tag detection accuracy from <50% to 100% and the tag backscatter signal strength by 10dB over a 20 m x 9 m area, compared with a conventional switched multi-antenna RFID system.