78 resultados para Helicity method, subtraction method, numerical methods, random polarizations


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key issue in the fabrication of Terfenol-D 2-2 composites with internal magnetic field biasing is the selection of appropriate constituent materials to obtain high magnetostriction while keeping optimum magnetomechanical properties. The fabrication process is costly and time consuming and, therefore, numerical methods to predict their properties are useful. In this paper, finite element analysis (FEA) of the magnetostriction of such composites has been carried out using the commercial package ABAQUS. It has been shown that composites fabricated using Nd2Fe14B for the permanent magnetic material layers possess the highest internal fields within the Terfenol-D layers, although the overall strain of these composites is limited to approximately 800 × 10-6 due to the high elastic modulus of Nd2Fe14B. Simulations showed that the strain can be enhanced by choosing a different material with a lower elastic modulus for the permanent magnetic layer even though the internal field is lower. The simulations showed that the strain can increase by 12% if the Nd 2Fe14B layer is substituted by SmCo5; by 23% if it is substituted by Sm2Co17; and by 35% if it is substituted by Alnico. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new shell model and an accompanying discretisation scheme that is suitable for thin and thick shells. The deformed configuration of the shell is parameterised using the mid-surface position vector and an additional shear vector for describing the out-of-plane shear deformations. In the limit of vanishing thickness, the shear vector is identically zero and the Kirchhoff-Love model is recovered. Importantly, there are no compatibility constraints to be satisfied by the shape functions used for discretising the mid-surface and the shear vector. The mid-surface has to be interpolated with smooth C 1-continuous shape functions, whereas the shear vector can be interpolated with C 0-continuous shape functions. In the present paper, the mid-surface as well as the shear vector are interpolated with smooth subdivision shape functions. The resulting finite elements are suitable for thin and thick shells and do not exhibit shear locking. The good performance of the proposed formulation is demonstrated with a number of linear and geometrically non-linear plate and shell examples. © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-implicit, second order temporal and spatial finite volume computations of the flow in a differentially heated rotating annulus are presented. For the regime considered, three cyclones and anticyclones separated by a relatively fast moving jet of fluid or "jet stream" are predicted. Two second order methods are compared with, first order spatial predictions, and experimental measurements. Velocity vector plots are used to illustrate the predicted flow structure. Computations made using second order central differences are shown to agree best with experimental measurements, and to be stable for integrations over long time periods (> 1000s). No periodic smoothing is required to prevent divergence.