64 resultados para HOT-JUPITER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust climbing in unstructured environments is a long-standing challenge in robotics research. Recently there has been an increasing interest in using adhesive materials for that purpose. For example, a climbing robot using hot melt adhesives (HMAs) has demonstrated advantages in high attachment strength, reasonable operation costs, and applicability to different surfaces. Despite the advantages, there still remain several problems related to the attachment and detachment operations, which prevent this approach from being used in a broader range of applications. Among others, one of the main problems lies in the fact that the adhesive characteristics of this material were not fully understood fin the context of robotic climbing locomotion. As a result, the previous robot often could not achieve expected locomotion performances and "contaminated" the environment with HMAs left behind. In order to improve the locomotion performances, this paper focuses on attachment and detachment operations in robot climbing with HMAs. By systematically analyzing the adhesive property and bonding strength of HMAs to different materials, we propose a novel detachment mechanism that substantially improves climbing performances without HMA traces. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability of extending body structures is one of the most significant challenges in the robotics research and it has been partially explored in self-reconfigurable robotics. By using such a capability, a robot is able to adaptively change its structure from, for example, a wheel like body shape to a legged one to deal with complexity in the environment. Despite their expectations, the existing mechanisms for extending body structures are still highly complex and the flexibility in self-reconfiguration is still very limited. In order to account for the problems, this paper investigates a novel approach to robotic body extension by employing an unconventional material called Hot Melt Adhesives (HMAs). Because of its thermo-plastic and thermo-adhesive characteristics, this material can be used for additive fabrication based on a simple robotic manipulator while the established structures can be integrated into the robot's own body to accomplish a task which could not have been achieved otherwise. This paper first investigates the HMA material properties and its handling techniques, then evaluates performances of the proposed robotic body extension approach through a case study of a "water scooping" task. © 2012 IEEE.