75 resultados para HETEROGENEOUS ENVIRONMENTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a large scale network of interconnected heterogeneous dynamical components. Scalable stability conditions are derived that involve the input/output properties of individual subsystems and the interconnection matrix. The analysis is based on the Davis-Wielandt shell, a higher dimensional version of the numerical range with important convexity properties. This can be used to allow heterogeneity in the agent dynamics while relaxing normality and symmetry assumptions on the interconnection matrix. The results include small gain and passivity approaches as special cases, with the three dimensional shell shown to be inherently connected with corresponding graph separation arguments. © 2012 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an alternative method of producing density stratifications in the laboratory based on the 'double-tank' method proposed by Oster (Sci Am 213:70-76, 1965). We refer to Oster's method as the 'forced-drain' approach, as the volume flow rates between connecting tanks are controlled by mechanical pumps. We first determine the range of density profiles that may be established with the forced-drain approach other than the linear stratification predicted by Oster. The dimensionless density stratification is expressed analytically as a function of three ratios: the volume flow rate ratio n, the ratio of the initial liquid volumes λ and the ratio of the initial densities ψ. We then propose a method which does not require pumps to control the volume flow rates but instead allows the connecting tanks to drain freely under gravity. This is referred to as the 'free-drain' approach. We derive an expression for the density stratification produced and compare our predictions with saline stratifications established in the laboratory using the 'free-drain' extension of Oster's method. To assist in the practical application of our results we plot the region of parameter space that yield concave/convex or linear density profiles for both forced-drain and free-drain approaches. The free-drain approach allows the experimentalist to produce a broad range of density profiles by varying the initial liquid depths, cross-sectional and drain opening areas of the tanks. One advantage over the original Oster approach is that density profiles with an inflexion point can now be established. © 2008 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a heterogeneous reconfigurable system for real-time applications applying particle filters. The system consists of an FPGA and a multi-threaded CPU. We propose a method to adapt the number of particles dynamically and utilise the run-time reconfigurability of the FPGA for reduced power and energy consumption. An application is developed which involves simultaneous mobile robot localisation and people tracking. It shows that the proposed adaptive particle filter can reduce up to 99% of computation time. Using run-time reconfiguration, we achieve 34% reduction in idle power and save 26-34% of system energy. Our proposed system is up to 7.39 times faster and 3.65 times more energy efficient than the Intel Xeon X5650 CPU with 12 threads, and 1.3 times faster and 2.13 times more energy efficient than an NVIDIA Tesla C2070 GPU. © 2013 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a statistical approach to the electromagnetic analysis of a system that lies within a reverberant cavity that has random or uncertain properties. The need to solve Maxwell's equations within the cavity is avoided by employing a relation known as the diffuse field reciprocity principle, which leads directly to the ensemble mean squared response of the system; all that is required is the impedance matrix of the system associated with radiation into infinite space. The general theoretical approach is presented, and the analysis is then applied to a five-cable bundle in a reverberation room © 2013 EMC Europe Foundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite many approaches proposed in the past, robotic climbing in a complex vertical environment is still a big challenge. We present here an alternative climbing technology that is based on thermoplastic adhesive (TPA) bonds. The approach has a great advantage because of its large payload capacity and viability to a wide range of flat surfaces and complex vertical terrains. The large payload capacity comes from a physical process of thermal bonding, while the wide applicability benefits from rheological properties of TPAs at higher temperatures and intermolecular forces between TPAs and adherends when being cooled down. A particular type of TPA has been used in combination with two robotic platforms, featuring different foot designs, including heating/cooling methods and construction of footpads. Various experiments have been conducted to quantitatively assess different aspects of the approach. Results show that an exceptionally high ratio of 500% between dynamic payloads and body mass can be achieved for stable and repeatable vertical climbing on flat surfaces at a low speed. Assessments on four types of typical complex vertical terrains with a measure, i.e., terrain shape index ranging from -0.114 to 0.167, return a universal success rate of 80%-100%. © 2004-2012 IEEE.