113 resultados para Final user
Resumo:
CLADP is an engineering software program developed at Cambridge University for the interactive computer aided design of feedback control systems. CLADP contains a wide range of tools for the analysis of complex systems, and the assessment of their performance when feedback control is applied, thus enabling control systems to be designed to meet difficult performance objectives. The range of tools within CLADP include the latest techniques in the field whose central theme is the extension of classical frequency domain concepts (well known and well proven for single loop systems) to multivariable or multiloop systems, and by making extensive use of graphical presentation information is provided in a readily understood form.
Resumo:
Over the past decade, a variety of user models have been proposed for user simulation-based reinforcement-learning of dialogue strategies. However, the strategies learned with these models are rarely evaluated in actual user trials and it remains unclear how the choice of user model affects the quality of the learned strategy. In particular, the degree to which strategies learned with a user model generalise to real user populations has not be investigated. This paper presents a series of experiments that qualitatively and quantitatively examine the effect of the user model on the learned strategy. Our results show that the performance and characteristics of the strategy are in fact highly dependent on the user model. Furthermore, a policy trained with a poor user model may appear to perform well when tested with the same model, but fail when tested with a more sophisticated user model. This raises significant doubts about the current practice of learning and evaluating strategies with the same user model. The paper further investigates a new technique for testing and comparing strategies directly on real human-machine dialogues, thereby avoiding any evaluation bias introduced by the user model. © 2005 IEEE.