83 resultados para Early detection of cancer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame. This is because manually inspecting bridges is a time-consuming and costly task, and some state Departments of Transportation (DOT) cannot afford the essential costs and manpower. In this paper, a novel method that can detect large-scale bridge concrete columns is proposed for the purpose of eventually creating an automated bridge condition assessment system. The method employs image stitching techniques (feature detection and matching, image affine transformation and blending) to combine images containing different segments of one column into a single image. Following that, bridge columns are detected by locating their boundaries and classifying the material within each boundary in the stitched image. Preliminary test results of 114 concrete bridge columns stitched from 373 close-up, partial images of the columns indicate that the method can correctly detect 89.7% of these elements, and thus, the viability of the application of this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After earthquakes, licensed inspectors use the established codes to assess the impact of damage on structural elements. It always takes them days to weeks. However, emergency responders (e.g. firefighters) must act within hours of a disaster event to enter damaged structures to save lives, and therefore cannot wait till an official assessment completes. This is a risk that firefighters have to take. Although Search and Rescue Organizations offer training seminars to familiarize firefighters with structural damage assessment, its effectiveness is hard to guarantee when firefighters perform life rescue and damage assessment operations together. Also, the training is not available to every firefighter. The authors therefore proposed a novel framework that can provide firefighters with a quick but crude assessment of damaged buildings through evaluating the visible damage on their critical structural elements (i.e. concrete columns in the study). This paper presents the first step of the framework. It aims to automate the detection of concrete columns from visual data. To achieve this, the typical shape of columns (long vertical lines) is recognized using edge detection and the Hough transform. The bounding rectangle for each pair of long vertical lines is then formed. When the resulting rectangle resembles a column and the material contained in the region of two long vertical lines is recognized as concrete, the region is marked as a concrete column surface. Real video/image data are used to test the method. The preliminary results indicate that concrete columns can be detected when they are not distant and have at least one surface visible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-earthquake structural safety evaluations are currently performed manually by a team of certified inspectors and/or structural engineers. This process is time-consuming and costly, keeping owners and occupants from returning to their businesses and homes. Automating these evaluations would enable faster, and potentially more consistent, relief and response processes. In order to do this, the detection of exposed reinforcing steel is of utmost significance. This paper presents a novel method of detecting exposed reinforcement in concrete columns for the purpose of advancing practices of structural and safety evaluation of buildings after earthquakes. Under this method, the binary image of the reinforcing area is first isolated using a state-of-the-art adaptive thresholding technique. Next, the ribbed regions of the reinforcement are detected by way of binary template matching. Finally, vertical and horizontal profiling are applied to the processed image in order to filter out any superfluous pixels and take into consideration the size of reinforcement bars in relation to that of the structural element within which they reside. The final result is the combined binary image disclosing only the regions containing rebar overlaid on top of the original image. The method is tested on a set of images from the January 2010 earthquake in Haiti. Preliminary test results convey that most exposed reinforcement could be properly detected in images of moderately-to-severely damaged concrete columns.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vision based tracking can provide the spatial location of construction entities such as equipment, workers, and materials in large scale, congested construction sites. It tracks entities in video streams by inferring their locations based on the entities’ visual features and motion histories. To initiate the process, it is necessary to determine the pixel areas corresponding to the construction entities to be tracked in the following consecutive video frames. In order to fully automate the process, an automated way of initialization is needed. This paper presents the method for construction worker detection which can automatically recognize and localize construction workers in video frames. The method first finds the foreground areas of moving objects using a background subtraction method. Within these foreground areas, construction workers are recognized based on the histogram of oriented gradients (HOG) and histogram of the HSV colors. HOG’s have proved to work effectively for detection of people, and the histogram of HSV colors helps differentiate between pedestrians and construction workers wearing safety vests. Preliminary experiments show that the proposed method has the potential to automate the initialization process of vision based tracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world is at the threshold of emerging technologies, where new systems in construction, materials, and civil and architectural design are poised to make the world better from a structural and construction perspective. Exciting developments, that are too many to name individually, take place yearly, affecting design considerations and construction practices. This edited book brings together modern methods and advances in structural engineering and construction, fulfilling the mission of ISEC Conferences, which is to enhance communication and understanding between structural and construction engineers for successful design and construction of engineering projects. The articles in this book are those accepted for publication and presentation at the 6th International Structural Engineering and Construction Conference in Zurich. The 6th ISEC Conference in Zurich, Switzerland, follows the overwhelming reception and success of previous ISEC conference in Las Vegas, USA in 2009; Melbourne, Australia in 2007; Shunan, Japan in 2005; Rome, Italy in 2003; and Honolulu, USA in 2001. Many topics are covered in this book, ranging from legal affairs and contracting, to innovations and risk analysis in infrastructure projects, analysis and design of structural systems, materials, architecture, and construction. The articles here are a lasting testimony to the excellent research being undertaken around the world. These articles provide a platform for the exchange of ideas, research efforts and networking in the structural engineering and construction communities. We congratulate and thank the authors for these articles that were selected after intensive peer-review, and our gratitude extends to all reviewers and members of the International Technical Committee. It is their combined contributions that have made this book a reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localization of chess-board vertices is a common task in computer vision, underpinning many applications, but relatively little work focusses on designing a specific feature detector that is fast, accurate and robust. In this paper the `Chess-board Extraction by Subtraction and Summation' (ChESS) feature detector, designed to exclusively respond to chess-board vertices, is presented. The method proposed is robust against noise, poor lighting and poor contrast, requires no prior knowledge of the extent of the chess-board pattern, is computationally very efficient, and provides a strength measure of detected features. Such a detector has significant application both in the key field of camera calibration, as well as in Structured Light 3D reconstruction. Evidence is presented showing its robustness, accuracy, and efficiency in comparison to other commonly used detectors both under simulation and in experimental 3D reconstruction of flat plate and cylindrical objects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantify the conditions that might trigger wide spread adoption of alternative fuel vehicles (AFVs) to support energy policy. Empirical review shows that early adopters are heterogeneous motivated by financial benefits, environmental appeal, new technology, and vehicle reliability. A probabilistic Monte Carlo simulation model is used to assess consumer heterogeneity for early and mass market adopters. For early adopters full battery electric vehicles (BEVs) are competitive but unable to surpass diesels or hybrids due to purchase price premium and lack of charging availability. For mass adoption, simulations indicate that if the purchase price premium of a BEV closes to within 20% of an in-class internal combustion engine (ICE) vehicle, combined with a 60% increase in refuelling availability relative to the incumbent system, BEVs become competitive. But this depends on a mass market that values the fuel economy and CO2 reduction benefits associated with BEVs. We also find that the largest influence on early adoption is financial benefit rather than pro-environmental behaviour suggesting that AFVs should be marketed by appealing to economic benefits combined with pro-environmental behaviour to motivate adoption. Monte Carlo simulations combined with scenarios can give insight into diffusion dynamics for other energy demand-side technologies. © 2012 Elsevier Inc.