88 resultados para Distance-balanced graph
Resumo:
This paper contains a review of recent results concerning the parametrization of asymptotically stable linear systems using balanced realizations. Particular emphasis is given on the application of these results to system identification. This work is part of a continuing programme aimed at elucidating the role of balanced realization in system identification.
Resumo:
Comprehensive computer modelling has been used to investigate the dependence of dispersion penalty on transmission length in an optical communications system employing a directly modulated 2.5Gbit/s DFB laser source and an optimised fibre grating dispersion compensator. Two grating apodization schemes, tanh and Gaussian, have been compared. The 2dB dispersion penalty transmission distance is shown to be approximately 520km along standard monomode fibre after compensation with a 5cm tanh grating. This represents a great improvement over the 150km range expected for a similar uncompensated system.
Resumo:
A near-field optical microscope (NFOM) has been developed that combines the features of a near-field optical microscope and an atomic force microscope. Improved control over tip-sample separation has led to improved optical imaging and independent surface topography information. The tip oscillation is normal to the sample plane thereby reducing lateral forces - important for nonperturbative imaging of soft samples. Both topographic images and reflection near-field optical images are presented which demonstrate the capability of the system. © 1996 American Institute of Physics.
Resumo:
Accurate and efficient computation of the nearest wall distance d (or level set) is important for many areas of computational science/engineering. Differential equation-based distance/ level set algorithms, such as the hyperbolic-natured Eikonal equation, have demonstrated valuable computational efficiency. Here, in the context, as an 'auxiliary' equation to the main flow equations, the Eikonal equation is solved efficiently with two different finite volume approaches (the cell vertex and cell-centered). Application of the distance solution is studied for various geometries. Moreover, a procedure using the differential field to obtain the medial axis transform (MAT) for different geometries is presented. The latter provides a skeleton representation of geometric models that has many useful analysis properties. As an alternative approach to the pure geometric methods (e.g. the Voronoi approach), the current d-MAT procedure bypasses many difficulties that are usually encountered by pure geometric methods, especially in three dimensional space. It is also shown that the d-MAT approach provides the potential to sculpt/control the MAT form for specialized solution purposes. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Deciding which technology to invest in is a recurring issue for technology managers, and the ability to successfully identify the right technology can be a make or break decision for a company. The effects of globalisation have made this issue even more imperative. Not only do companies have to be competitive by global standards but increasingly they have to source technological capabilities from overseas as well. Technology managers already have a variety of decision aids to draw upon, including valuation tools, for example DCF and real options; decision trees; and technology roadmapping. However little theory exists on when, where, why or even how to best apply particular decision aids. Rather than developing further techniques, this paper reviews the relevance and limitations of existing techniques. This is drawn from an on going research project which seeks to support technology managers in selecting and applying existing decision aids and potentially in the design of future decision aids. It is intended that through improving the selection of decision aids, decision performance can be increased, leading to more effective allocation of resources and hence competitive advantage. (c) 2006 PICMET.