102 resultados para Dielectric and piezoelectric properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of the relative volumes of mineral and collagen to the nanomechanical behavior of articular calcified cartilage is explored using nanoindentation, quantitative backscattered electron imaging, and finite element analysis. Elastic modulus generally increases with mineral volume fraction. In highly mineralized tissues, the mineral occupation of water space significantly increases modulus with addition of little mineral. Mineral and organic phases were modeled using Hashin-Shtrikman composite bounds, calculated as a function of mineral volume fraction. Modulus values fall between the Hashin-Shtrikman bounds, indicating some intermediate degree of mineral phase connectivity. Such connectivity in ACC is greater than that achieved in bone and results from uniform collagen orientation and large volume of water space available for mineral occupation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y-Ba-Cu-O (YBCO) single grains have the potential to generate large trapped magnetic fields for engineering applications, and research on the processing and properties of this material has attracted interest world-wide over the past 20 years. In particular, the introduction of flux pinning centers to the large grain microstructure to improve its current density Jc, and hence trapped field, has been investigated extensively. Y2Ba 4CuMO2 [Y-2411(M)], where M = Nb, Ta, Mo, W, Ru, Zr, Bi and Ag, has been discovered recently to form very effective flux pinning centers due primarily to its ability to form nano-size inclusions in the superconducting phase matrix. However, the addition of the Y-2411(M) phase to the precursor composition complicates the melt-processing of single grains. The addition of Y2O3 to the precursor composition, however, broadens the growth window of single YBCO grains containing Y-2411 (M). We report an investigation of the microstructures and superconducting properties of single grains of this composition grown by top seeded melt growth (TSMG). © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems. © 2011 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in functionality and reliability of carbon nanotube (CNT) composite materials require careful formulation of processing methods to ultimately realize the desired properties. To date, controlled dispersion of CNTs in a solution or a composite matrix remains a challenge, due to the strong van der Waals binding energies associated with the CNT aggregates. There is also insufficiently defined correlation between the microstructure and the physical properties of the composite. Here, we offer a review of the dispersion processes of pristine (non-covalently functionalized) CNTs in a solvent or a polymer solution. We summarize and adapt relevant theoretical analysis to guide the dispersion design and selection, from the processes of mixing/sonication, to the application of surfactants for stabilization, to the final testing of composite properties. The same approaches are expected to be also applicable to the fabrication of other composite materials involving homogeneously dispersed nanoparticles. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and magnetic properties of the transition metal sesqui-oxides Cr(2)O(3), Ti(2)O(3), and Fe(2)O(3) have been calculated using the screened exchange (sX) hybrid density functional. This functional is found to give a band structure, bandgap, and magnetic moment in better agreement with experiment than the local density approximation (LDA) or the LDA+U methods. Ti(2)O(3) is found to be a spin-paired insulator with a bandgap of 0.22 eV in the Ti d orbitals. Cr(2)O(3) in its anti-ferromagnetic phase is an intermediate charge transfer Mott-Hubbard insulator with an indirect bandgap of 3.31 eV. Fe(2)O(3), with anti-ferromagnetic order, is found to be a wide bandgap charge transfer semiconductor with a 2.41 eV gap. Interestingly sX outperforms the HSE functional for the bandgaps of these oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulation results are reported for a realistic polarizable potential model of water in the supercooled region. Three states, corresponding to the low density amorphous ice, high density amorphous ice, and very high density amorphous ice phases are chosen for the analyses. These states are located close to the liquid-liquid coexistence lines already shown to exist for the considered model. Thermodynamic and structural quantities are calculated, in order to characterize the properties of the three phases. The results point out the increasing relevance of the interstitial neighbors, which clearly appear in going from the low to the very high density amorphous phases. The interstitial neighbors are found to be, at the same time, also distant neighbors along the hydrogen bonded network of the molecules. The role of these interstitial neighbors has been discussed in connection with the interpretation of recent neutron scattering measurements. The structural properties of the systems are characterized by looking at the angular distribution of neighboring molecules, volume and face area distribution of the Voronoi polyhedra, and order parameters. The cumulative analysis of all the corresponding results confirms the assumption that a close similarity between the structural arrangement of molecules in the three explored amorphous phases and that of the ice polymorphs I(h), III, and VI exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the electrical properties of Silicon-on-Insulator photonic crystals as a function of doping level and air filling factor. A very interesting trade-off between conductivity and optical losses in L3 cavities is also found. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the electrical properties of silicon-on-insulator (SOI) photonic crystals as a function of both doping level and air filling factor. The resistance trends can be clearly explained by the presence of a depletion region around the sidewalls of the holes that is caused by band pinning at the surface. To understand the trade-off between the carrier transport and the optical losses due to free electrons in the doped SOI, we also measured the resonant modes of L3 photonic crystal nanocavities and found that surprisingly high doping levels, up to 1018 / cm3, are acceptable for practical devices with Q factors as high as 4× 104. © 2011 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 °C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N2. Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 1022 cm-3) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material. © 2007 Elsevier B.V. All rights reserved.