74 resultados para Design optimisation
Resumo:
The Trench Insulated Gate Bipolar Transistor (IGBT) is the most promising structure for the next generation of power semiconductor devices with wide applications ranging from motor control (1-4 kV) to HVDC (6.5 kV). Here we present for the first time an optimum design of a 1.4kV Trench IGBT using a new, fully integrated optimisation system comprising process and device simulators and the RSM optimiser. The use of this new TCAD system has contributed largely to realizing devices with characteristics far superior to the previous DMOS generation of IGBTs. Full experimental results on 1.4kV Trench IGBTs which are in excellent agreement with the TCAD predictions are reported.
Resumo:
Façade design is a complex and multi-disciplinary process. One major barrier to devising optimal façade solutions is the lack of a systematic way of evaluating the true social, economic and environmental impacts of a design. Another barrier is the lack of automated design aids to assist decision-making. In this paper, we present our on-going study in developing a whole-life value based multi-objective optimisation model for high-performance façades. The principal outcome of this paper is a multi-objective optimisation model for early-stage façade design. The optimisation technique coupled with other 3rd party software and/or specially developed scripts provide façade designers with an integrated design tool of wide applicability.
Resumo:
This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Decision-making in the façade design process has a significant influence on several aspects of indoor environment, thereby making it a complex and multi-objective optimisation process. There are two principal barriers in the process of indentifying an optimal façade solution. Firstly, most existing indoor environmental evaluation methods do not account for all the indoor environmental quality (IEQ) aspects relevant to façade design. Secondly, the relationship between the physical properties of a particular façade design option and the resulting economic benefits accrued during its service-life is unknown. In this paper, we introduce the bases for establishing relationships between occupant productivity and the combinatorial effects of four key façade-related IEQ aspects, namely, thermal comfort, aural comfort, visual comfort and air quality, on occupant productivity. The proposed framework's potential is tested against seven existing experimental investigations and its applicability is illustrated by a simple façade design example. The proposed approach ultimately aims to provide a quantitative economic measure of alternative façade design options that would be applicable to early design stage. Aspects of the work that require further experimental validation are identified. © 2012 Elsevier Ltd.
Resumo:
A simple and general design procedure is presented for the polarisation diversity of arbitrary conformal arrays; this procedure is based on the mathematical framework of geometric algebra and can be solved optimally using convex optimisation. Aside from being simpler and more direct than other derivations in the literature, this derivation is also entirely general in that it expresses the transformations in terms of rotors in geometric algebra which can easily be formulated for any arbitrary conformal array geometry. Convex optimisation has a number of advantages; solvers are widespread and freely available, the process generally requires a small number of iterations and a wide variety of constraints can be readily incorporated. The study outlines a two-step approach for addressing polarisation diversity in arbitrary conformal arrays: first, the authors obtain the array polarisation patterns using geometric algebra and secondly use a convex optimisation approach to find the optimal weights for the polarisation diversity problem. The versatility of this approach is illustrated via simulations of a 7×10 cylindrical conformal array. © 2012 The Institution of Engineering and Technology.
Resumo:
This paper presents a novel way to speed up the evaluation time of a boosting classifier. We make a shallow (flat) network deep (hierarchical) by growing a tree from decision regions of a given boosting classifier. The tree provides many short paths for speeding up while preserving the reasonably smooth decision regions of the boosting classifier for good generalisation. For converting a boosting classifier into a decision tree, we formulate a Boolean optimization problem, which has been previously studied for circuit design but limited to a small number of binary variables. In this work, a novel optimisation method is proposed for, firstly, several tens of variables i.e. weak-learners of a boosting classifier, and then any larger number of weak-learners by using a two-stage cascade. Experiments on the synthetic and face image data sets show that the obtained tree achieves a significant speed up both over a standard boosting classifier and the Fast-exit-a previously described method for speeding-up boosting classification, at the same accuracy. The proposed method as a general meta-algorithm is also useful for a boosting cascade, where it speeds up individual stage classifiers by different gains. The proposed method is further demonstrated for fast-moving object tracking and segmentation problems. © 2011 Springer Science+Business Media, LLC.
Resumo:
An investigation into the potential for reducing road damage by optimising the design of heavy vehicle suspensions is described. In the first part of the paper two simple mathematical models are used to study the optimisation of conventional passive suspensions. Simple modifications are made to the steel spring suspension of a tandem axle trailer and it is found experimentally that RMS dynamic tyre forces can be reduced by 15% and theoretical road damage by 5.2%. A mathematical model of an air-sprung articulated vehicle is validated, and its suspension is optimised according to the simple models. This vehicle generates about 9% less damage than the leaf-sprung vehicle in the unmodified state and it is predicted that, for the operating conditions examined, the road damage caused by this vehicle can be reduced by a further 5.4%. Finally, it is shown experimentally that computer-controlled semi-active dampers have the potential to reduce road damage by a further 5-6%, compared to an air suspension with optimum passive damping. © Copyright 1994 Society of Automotive Engineers, Inc.
Resumo:
The most common approach to decision making in multi-objective optimisation with metaheuristics is a posteriori preference articulation. Increased model complexity and a gradual increase of optimisation problems with three or more objectives have revived an interest in progressively interactive decision making, where a human decision maker interacts with the algorithm at regular intervals. This paper presents an interactive approach to multi-objective particle swarm optimisation (MOPSO) using a novel technique to preference articulation based on decision space interaction and visual preference articulation. The approach is tested on a 2D aerofoil design case study and comparisons are drawn to non-interactive MOPSO. © 2013 IEEE.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load De ation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the fl apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and eficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same flapwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 by Nordex Energy GmbH.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load Deation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and efficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same apwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 AIAA.