65 resultados para Debt constraints
Resumo:
In this paper, we tackle the problem of learning a linear regression model whose parameter is a fixed-rank matrix. We study the Riemannian manifold geometry of the set of fixed-rank matrices and develop efficient line-search algorithms. The proposed algorithms have many applications, scale to high-dimensional problems, enjoy local convergence properties and confer a geometric basis to recent contributions on learning fixed-rank matrices. Numerical experiments on benchmarks suggest that the proposed algorithms compete with the state-of-the-art, and that manifold optimization offers a versatile framework for the design of rank-constrained machine learning algorithms. Copyright 2011 by the author(s)/owner(s).
Resumo:
The optimization of a near-circular low-Earth-orbit multispacecraft refueling problem is studied. The refueling sequence, service time, and orbital transfer time are used as design variables, whereas the mean mission completion time and mean propellant consumed by orbital maneuvers are used as design objectives. The J2 term of the Earth's nonspherical gravity perturbation and the constraints of rendezvous time windows are taken into account. A hybridencoding genetic algorithm, which uses normal fitness assignment to find the minimum mean propellant-cost solution and fitness assignment based on the concept of Pareto-optimality to find multi-objective optimal solutions, is presented. The proposed approach is demonstrated for a typical multispacecraft refueling problem. The results show that the proposed approach is effective, and that the J2 perturbation and the time-window constraints have considerable influences on the optimization results. For the problems in which the J2 perturbation is not accounted for, the optimal refueling order can be simply determined as a sequential order or as the order only based on orbitalplane differences. In contrast, for the problems that do consider the J2 perturbation, the optimal solutions obtained have a variety of refueling orders and use the drift of nodes effectively to reduce the propellant cost for eliminating orbital-plane differences. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
A method is proposed for on-line reconfiguration of the terminal constraint used to provide theoretical nominal stability guarantees in linear model predictive control (MPC). By parameterising the terminal constraint, its complete reconstruction is avoided when input constraints are modified to accommodate faults. To enlarge the region of feasibility of the terminal control law for a certain class of input faults with redundantly actuated plants, the linear terminal controller is defined in terms of virtual commands. A suitable terminal cost weighting for the reconfigurable MPC is obtained by means of an upper bound on the cost for all feasible realisations of the virtual commands from the terminal controller. Conditions are proposed that guarantee feasibility recovery for a defined subset of faults. The proposed method is demonstrated by means of a numerical example. © 2013 Elsevier B.V. All rights reserved.