80 resultados para Cross
Resumo:
Models capturing the connectivity between different domains of a design, e.g. between components and functions, can provide a tool for tracing and analysing aspects of that design. In this paper, video experiments are used to explore the role of cross-domain modelling in building up information about a design. The experiments highlight that cross-domain modelling can be a useful tool to create and structure design information. Findings suggest that consideration of multiple domains encourages discussion during modelling, helps identify design aspects that might otherwise be overlooked, and can help promote consideration of alternative design options. Copyright © 2002-2012 The Design Society. All rights reserved.
Resumo:
To meet targeted reductions in CO 2 emissions by 2050, demand for metal must be cut, for example through the use of lightweight technologies. However, the efficient production of weight optimized components often requires new, more flexible forming processes. In this paper, a novel hot rolling process is presented for forming I-beams with variable cross-section, which are lighter than prismatic alternatives. First, the new process concept is presented and described. A detailed computational and experimental analysis is then conducted into the capabilities of the process. Results show that the process is capable of producing defect free I-beams with variations in web depth of 30-50%. A full analysis of the process then indicates the likely failure modes, and identifies a safe operating window. Finally, the implications of these results for producing lightweight beams are discussed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A technique of cross talk mitigation developed for liquid crystal on silicon spatial light modulator based optical interconnects and fiber switches is demonstrated. By purposefully introducing an appropriate aberration into the system, it is possible to reduce the worst-case cross talk by over 10 dB compared to conventional Fourier-transform-based designs. Tests at a wavelength of 674nm validate this approach, and show that there is no noticeable reduction in diffraction efficiency. A 27% spot increase in beam diameter is observed, which is predicted to reduce at longer datacom and telecom wavelengths. © 2012 Optical Society of America.
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple subsystems developed at different sites. Cross system adaptation can be used as an alternative to direct hypothesis level combination schemes such as ROVER. The standard approach involves only cross adapting acoustic models. To fully exploit the complimentary features among sub-systems, language model (LM) cross adaptation techniques can be used. Previous research on multi-level n-gram LM cross adaptation is extended to further include the cross adaptation of neural network LMs in this paper. Using this improved LM cross adaptation framework, significant error rate gains of 4.0%-7.1% relative were obtained over acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. Copyright © 2011 ISCA.
Resumo:
This paper presents an analytical modeling technique for the simulation of long-range ultrasonic guided waves in structures. The model may be used to predict the displacement field in a prismatic structure arising from any excitation arrangement and may therefore be used as a tool to design new inspection systems. It is computationally efficient and relatively simple to implement, yet gives accuracy similar to finite element analysis and semi-analytical finite element analysis methods. The model has many potential applications; one example is the optimization of part-circumferential arrays where access to the full circumference of the pipe is restricted. The model has been successfully validated by comparison with finite element solutions. Experimental validation has also been carried out using an array of piezoelectric transducer elements to measure the displacement field arising from a single transducer element in an 88.9-mm-diameter pipe. Good agreement has been obtained between the two models and the experimental data.
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple sub-systems that may even be developed at different sites. Cross system adaptation, in which model adaptation is performed using the outputs from another sub-system, can be used as an alternative to hypothesis level combination schemes such as ROVER. Normally cross adaptation is only performed on the acoustic models. However, there are many other levels in LVCSR systems' modelling hierarchy where complimentary features may be exploited, for example, the sub-word and the word level, to further improve cross adaptation based system combination. It is thus interesting to also cross adapt language models (LMs) to capture these additional useful features. In this paper cross adaptation is applied to three forms of language models, a multi-level LM that models both syllable and word sequences, a word level neural network LM, and the linear combination of the two. Significant error rate reductions of 4.0-7.1% relative were obtained over ROVER and acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl2 (LSFR), sodium (SFR), and supercritical CO2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO2 reflector to achieve negative coolant void worth-one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR. © 2009 Elsevier B.V. All rights reserved.
Resumo:
BGCore is a software package for comprehensive computer simulation of nuclear reactor systems and their fuel cycles. The BGCore interfaces Monte Carlo particles transport code MCNP4C with a SARAF module - an independently developed code for calculating in-core fuel composition and spent fuel emissions following discharge. In BGCore system, depletion coupling methodology is based on the multi-group approach that significantly reduces computation time and allows tracking of large number of nuclides during calculations. In this study, burnup calculation capabilities of BGCore system were validated against well established and verified, computer codes for thermal and fast spectrum lattices. Very good agreement in k eigenvalue and nuclide densities prediction was observed for all cases under consideration. In addition, decay heat prediction capabilities of the BGCore system were benchmarked against the most recent edition of ANS Standard methodology for UO2 fuel decay power prediction in LWRs. It was found that the difference between ANS standard data and that predicted by the BGCore does not exceed 5%.
Resumo:
Coupled Monte Carlo depletion systems provide a versatile and an accurate tool for analyzing advanced thermal and fast reactor designs for a variety of fuel compositions and geometries. The main drawback of Monte Carlo-based systems is a long calculation time imposing significant restrictions on the complexity and amount of design-oriented calculations. This paper presents an alternative approach to interfacing the Monte Carlo and depletion modules aimed at addressing this problem. The main idea is to calculate the one-group cross sections for all relevant isotopes required by the depletion module in a separate module external to Monte Carlo calculations. Thus, the Monte Carlo module will produce the criticality and neutron spectrum only, without tallying of the individual isotope reaction rates. The onegroup cross section for all isotopes will be generated in a separate module by collapsing a universal multigroup (MG) cross-section library using the Monte Carlo calculated flux. Here, the term "universal" means that a single MG cross-section set will be applicable for all reactor systems and is independent of reactor characteristics such as a neutron spectrum; fuel composition; and fuel cell, assembly, and core geometries. This approach was originally proposed by Haeck et al. and implemented in the ALEPH code. Implementation of the proposed approach to Monte Carlo burnup interfacing was carried out through the BGCORE system. One-group cross sections generated by the BGCORE system were compared with those tallied directly by the MCNP code. Analysis of this comparison was carried out and led to the conclusion that in order to achieve the accuracy required for a reliable core and fuel cycle analysis, accounting for the background cross section (σ0) in the unresolved resonance energy region is essential. An extension of the one-group cross-section generation model was implemented and tested by tabulating and interpolating by a simplified σ0 model. A significant improvement of the one-group cross-section accuracy was demonstrated.