114 resultados para Coupled tg-ftir


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a time-stepping shaker modeling scheme. The new method improves the accuracy of analysis of armature-position-dependent inductances and force factors, analysis of axial variation of current density in copper plates (short-circuited turns), and analysis of cooling holes in the magnetic circuit. Linear movement modeling allows armature position to be precisely included in the shaker analysis. A more accurate calculation of eddy currents in the coupled circuit is in particular crucial for the shaker analysis in a mid-or high-frequency operation range. Large currents in a shaker, including eddy currents, incur large Joule losses, which in turn require the use of a cooling system to keep temperature at bay. Sizable cooling holes have influence on the saturation state of iron poles, and hence have to be properly taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic analysis of a deepwater floating platform and the associated mooring/riser system should ideally be fully coupled to ensure a reliable response prediction. It is generally held that a time domain analysis is the only means of capturing the various coupling and nonlinear effects accurately. However, in recent work it has been found that for an ultra-deepwater floating system (2000m water depth), the highly efficient frequency domain approach can provide highly accurate response predictions. One reason for this is the accuracy of the drag linearization procedure over both first and second order motions, another reason is the minimal geometric nonlinearity displayed by the mooring lines in deepwater. In this paper, the aim is to develop an efficient analysis method for intermediate water depths, where both mooring/vessel coupling and geometric nonlinearity are of importance. It is found that the standard frequency domain approach is not so accurate for this case and two alternative methods are investigated. In the first, an enhanced frequency domain approach is adopted, in which line nonlinearities are linearized in a systematic way. In the second, a hybrid approach is adopted in which the low frequency motion is solved in the time domain while the high frequency motion is solved in the frequency domain; the two analyses are coupled by the fact that (i) the low frequency motion affects the mooring line geometry for the high frequency motion, and (ii) the high frequency motion affects the drag forces which damp the low frequency motion. The accuracy and efficiency of each of the methods are systematically compared. Copyright © 2007 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a simple method to include superstructure stiffness in foundation analyses. The method involves extracting a small "condensed structural matrix" from finite element models of the superstructure, which can then be incorporated into pile group or piled raft analyses using common approaches such as elastic continuum or load transfer methods. The matrix condensation method directly couples structural and geotechnical analyses, and eliminates the need for iterative analyses between structural and geotechnical engineers. Effectiveness of the approach is illustrated through analyses of several buildings designed with a typical floor plan but with varying heights. The parametric study illustrates that superstructure stiffness can have a significant influence on foundation settlement estimates, and the stiffening effects are dominated by the lower stories of the superstructure. The proposed method aims to bridge the gap between structural and geotechnical analyses. Also, being a computationally simple and accurate approach, it is applicable to parametric or optimization studies that would otherwise involve large amounts of analyses. © 2010 ASCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over recent years we have developed and published research aimed at producing a meshing, geometry editing and simulation system capable of handling large scale, real world applications and implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the extension of this meshing system to include conjugate meshes for multi-physics simulations. Two contrasting applications are presented: export of a body-conformal mesh to drive a commercial, third-party simulation system; and direct use of the cut-Cartesian octree mesh with a single, integrated, close-coupled multi-physics simulation system. Copyright © 2010 by W.N.Dawes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation of dynamical systems in harsh environments requires continuous monitoring. Internal sensors may be used to monitor the conditions in real time. A typical example is the sensor and electronic components used in space structures which, especially during launch, are subject to huge g force. The paper will present an experimental and theoretical study on a simplified model used to analyze the possible cause of high acceleration on the enclosed sensors and equipments due to impulsive loading. The model system consists of two beams coupled using compliant connections. An impulse hammer excites one beam, and vibrations are transmitted to the indirectly driven beam. A theoretical model is developed using a Rayleigh-Ritz approach and validated using experimental results in both the frequency and time domains. Monto Carlo simulation was done with random masses positioned on the indirectly driven beam to determine the worst-case conditions for maximum peak acceleration. Highest acceleration levels were found when mode matching in the two beams led to veering behavior in the coupled modes. The results suggest guidelines for the detailed design of internal components of a structure exposed to shock loading from its environment. [The authors thank Schlumberger Cambridge Research for financial support.].