121 resultados para Classification Tree Pruning
Resumo:
We provide a comprehensive overview of many recent algorithms for approximate inference in Gaussian process models for probabilistic binary classification. The relationships between several approaches are elucidated theoretically, and the properties of the different algorithms are corroborated by experimental results. We examine both 1) the quality of the predictive distributions and 2) the suitability of the different marginal likelihood approximations for model selection (selecting hyperparameters) and compare to a gold standard based on MCMC. Interestingly, some methods produce good predictive distributions although their marginal likelihood approximations are poor. Strong conclusions are drawn about the methods: The Expectation Propagation algorithm is almost always the method of choice unless the computational budget is very tight. We also extend existing methods in various ways, and provide unifying code implementing all approaches.
Resumo:
A simple model of deploying tree leaves is assembled in different arrangements to produce polygonal foldable membranes for use as deployable structures. One family of folding patterns exhibits a small strain mechanism, which is investigated. Variations on the basic arrangements can be used to fold membranes with a discretized curvature.