75 resultados para CASTING ALLOYS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article a study of the fracture characteristics of Co66Fe4Mo2Si16B12 amorphous ribbon in the as-quenched state and after relaxation is presented. In the as-quenched state, the morphology of the crack surface shows a 'vein pattern' structure that corresponds to a large amount of plastic flow. After relaxation the surface morphology of the crack shows that when the temperature of the thermal annealing increases the plastic flow involved in the crack decreases. In the as-quenched state dynamic fracture characteristics (crack branching and stress wave induced crack) have been observed. These dynamic characteristics have not been observed in the relaxed samples but in the samples annealed at 250 °C for 20 min apart from the main crack, a crack along the width of the ribbon has been observed. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter focuses on relationships between plastic deformation structures and mechanical properties in metals and alloys deforming by dislocation glide. We start by summarizing plastic deformation processes, then look at the fundamental mechanisms of plastic deformation and explore how deformation structures evolve. We then turn to experimental techniques for characterization which have allowed deformation microstructures to be quantified in terms of common structural parameters. The microstructural evolution has been described over many length scales and analyzed theoretically based on general principles. The deformation microstructures are related to work hardening stages. Finally we identify correlations between a wide range of microstructural features and mechanical properties, particularly flow stress, and use experimental observations to illustrate their inter-relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 °C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependence of the stress-induced martensite (SIM) formation in a Ti-10V-2Fe-3Al (Ti-1023) alloy under compressive loading has been studied. At low temperatures, the stress level at which martensite starts to form increases linearly with the deformation temperature, while the stress at which the deformation switches to regular plastic deformation is roughly temperature independent. A thermostatistical model for dislocation evolution is employed to describe deformation twinning in martensite. Combined effects of twinning induced plasticity and solid solution strengthening are considered in terms of temperature variations. The SIM effect disappears on deformation at temperatures beyond ~ 233 ° C, which is close to the predicted Ms temperature of 240°C. The thermostatistical model predicts a transition from twinned martensite to pure slip at 250°C. By providing a model to predict the martensite formation, and by describing deformation twinning, the present work provides a number of tools that may be employed to conceive new titanium alloys combining improved strength and ductility. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-functional 1 × 9 wavelength selective switch based on liquid crystal on silicon (LCOS) spatial light modulator technology and anamorphic optics was tested at a channel spacing of 100 and 200 GHz, including dynamic data measurements on both single beam deflection and multi-casting to two ports. The multi-casting holograms were optimized using a modified Gerchberg-Saxton routine to design the core hologram, followed by a simulated annealing routine to reduce crosstalk at non-switched ports. The effect of clamping the magnitude of phase changes between neighboring pixels during optimization was investigated, with experimental results for multi-casting to two ports resulting in a signal insertion loss of-7.6 dB normalized to single port deflection, a uniformity of ±0.6%, and a worst case crosstalk of-19.4 dB, which can all be improved further by using a better anti-reflection coating on the LCOS SLM coverplate and other measures. © 2013 IEEE.