122 resultados para Basic Integration
Resumo:
A novel CMOS compatible lateral thyristor is proposed in this paper. Its thyristor conduction is fully controlled by a p-MOS gate. Loss of MOS control due to parasitic latch-up has been eliminated and triggering of the main thyristor at lower forward current achieved. The device operation has been verified by 2-D numerical simulations and experimental fabrication.
Resumo:
A Nanoelectromechanical (NEM) device developed for dynamic random access memory (DRAM) is reported. A vertical nanotube structure is employed to form the electromechanical switch and capacitor structure. The mechanical movement of the nanotube defines 'On' and 'OFF' states and the electrical signals which result lead to charge storage in a vertical capacitor structure as in a traditional DRAM. The vertical structure contributes greatly to a decrease in cell dimension. The main concept of the NEM switch and capacitor can be applied to other memory devices as well. © 2005 IEEE.
Resumo:
MOTIVATION: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. RESULTS: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs. AVAILABILITY: If interested in the code for the work presented in this article, please contact the authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Time integration techniques to investigate the long-term behaviour of dissipative structural systems
Resumo:
It has been shown that the apparent benefits of a two-layer stacked SOI system, i.e. packing density and speed improvements, are less than could be expected in the context of a VLSI requirement [1]. In this project the stacked SOI system has been identified as having major application in the realization of integrated, mixed technology systems. Zone-melting-recrystallization (ZMR) with lasers and electron beams have been used to produce device quality SOI material and a small test-bed circuit has been designed as a demonstration of the feasibility of this approach. © 1988.
Resumo:
This paper describes the design considerations for a proposed aerodynamic characterization facility (ACF) for micro aerial vehicles (MAVs). This is a collaborative effort between the Air Force Research Laboratory Munitions Directorate (AFRL/MN) and the University of Florida Research and Engineering Education Facility (UF/REEF). The ACF is expected to provide a capability for the characterization of the aerodynamic performance of future MAVs. This includes the ability to gather the data necessary to devise control strategies as well as the potential to investigate aerodynamic 'problem areas' or specific failings. Since it is likely that future MAVs will incorporate advanced control strategies, the facility must enable researchers to critically assess such novel methods. Furthermore, the aerodynamic issues should not be seen (and tested) in isolation, but rather the facility should be able to also provide information on structural responses (such as aeroelasticity) as well as integration issues (say, thrust integration or sensor integration). Therefore the mission for the proposed facility ranges form fairly basic investigations of individual technical issues encountered by MAVs (for example an evaluation of wing shapes or control effectiveness) all the way to testing a fully integrated vehicle in a flight configuration for performance evaluation throughout the mission envelope.
Resumo:
During laser welding, the keyhole is generated by the recoil pressure induced by the evaporation processes occurring mainly on the front keyhole wall (KW). In order to characterize the evaporation process, we have measured this recoil pressure by using a plume deflection technique, where the plume generated for static conditions (i. e. with no sample displacement) is deflected by a transverse side gas jet. From the measurement of the plume deflection angle, the recoil pressure can be determined as a function of incident intensity and sample material. From these data one can estimate the pressure generated on the front KW, during laser welding. Therefore, the corresponding dynamic pressure exerted by the vapor plume expansion on the rear KW, in contact with the melt pool, can be also estimated. These pressures appear to be in close agreement with those generated by an additional side jet that has been used in previous experiments, for stabilizing the observed melt pool oscillations or fluctuations.
Resumo:
The application of automated design optimization to real-world, complex geometry problems is a significant challenge - especially if the topology is not known a priori like in turbine internal cooling. The long term goal of our work is to focus on an end-to-end integration of the whole CFD Process, from solid model through meshing, solving and post-processing to enable this type of design optimization to become viable & practical. In recent papers we have reported the integration of a Level Set based geometry kernel with an octree-based cut- Cartesian mesh generator, RANS flow solver, post-processing & geometry editing all within a single piece of software - and all implemented in parallel with commodity PC clusters as the target. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh guided by the underpinning Level Set. This paper extends this work still further with a simple scoping study showing how the basic functionality can be scripted & automated and then used as the basis for automated optimization of a generic gas turbine cooling geometry. Copyright © 2008 by W.N.Dawes.