121 resultados para All-optical packet routing
Resumo:
A technique is demonstrated that allows for the wavelength conversion of data with both simultaneous monitoring and replacing of a wavelength identifying pilot tone. The technique should be upgradable to data rates of 10Gb/s and higher.
Resumo:
An integrated multiwavelength grating cavity (MGC) laser fabricated by selective area regrowth is demonstrated. In addition to allowing wavelength conversion, the device can perform various important network functions such as space switching and multiplexing. The use of the device for these functions offers several advantages from a wavelength division multiplexing (WDM) network, such as flexibility, reduced component count, size, and the associated cost reduction.
Resumo:
Interferometric Optical Wavelength Converters (IOWCs) provide wavelength conversion functionality at high bit rates, and give low chip and enhanced extinction ratio compared with Cross-Gain wavelength converters. In paper, a numerical simulation is conducted to assess the noise performance of IOWC and its potential for cascading. The details of the experiment and the results obtained are presented.
Resumo:
A novel integrated Multi-Wavelength Grating Cavity (MGC) laser has been used for multi-channel wavelength conversion at 2.488 Gbits/s. Functions demonstrated include conversion to multiple wavelengths, WDM multiplexing and 1×4 space switching.
Resumo:
A novel InGaAs/InGaAsP/InP integrated multiwavelength grating cavity laser is presented, which has been used to demonstrate space switching and simultaneous all-optical wavelength conversion at bit rates of 2.488 Gbit/s. This has been achieved using a single monolithically integrated device without the need for post-filtering to separate the converted signal from the input.
Resumo:
Using a compact, integrated device at 2.488Gb/s, simultaneous NRZ to RZ format conversion and regeneration was achieved. The regenerated signal has a negative BER sensitivity of -1.5dB compared with a data signal transmitted down 101km of standard fiber.
Resumo:
The simultaneous all optical 3R regeneration and format conversion in a simple, single integrated device was examined. The integrated device consisted of a semiconductor optical fiber (SOA) monolithically integrated with a distributed feedback (DFB) laser. Gain saturation was employed for the transmission of a data signal regenerated all-optically in the laser/amplifier device. The regeneration of the electrically filtered eye diagrams was observed by noise removal and extinction ratio-improvement by the device.
Resumo:
A strain-compensated multiple quantum well device is used as a DFB laser, this has been optimized for low jitter gain switched operation at 10 GHz. The signal is transmitted down 80 km of standard fiber then amplified, filtered and polarization controlled before being injected into a DFB laser. The purpose of this regeneration process is to gain switch the DFB with the extracted clock signal in order to retime the converted signal. This process also simultaneously converts the input NRZ format to an output RZ data to format and results in a signal whose optical power and extinction ratio are considerably improved by the regeneration process.
All-optical switching in a vertical coupler space switch employing photocarrier-induced nonlinearity
Resumo:
A novel compact integrated nonlinear optical switch is demonstrated. Using a high-power picosecond pulse of 5-ps pulsewidth and 250-MHz repetition rate, all-optical switching with a contrast ratio of 23 dB has been achieved using an in-fiber input power < 14 dBm (100 pJ/pulse). The switch speed depends on the carrier sweep-out time, which can be reduced to the 10 ps range by either applying a reverse bias or by introduction of carrier recombination centers in the active layer.
Resumo:
A novel integrated Multi-Wavelength Grating Cavity (MGC) laser has been used for multi-channel wavelength conversion at 2.488Gbits/s. Functions demonstrated include conversion to multiple wavelengths, WDM multiplexing and 1×4 space switching.
Resumo:
We propose a self-forwarding packet-switched optical network with bit-parallel multi-wavelength labels. We experimentally demonstrate transmission of variable-length optical packets over 80 km of fiber and switching over a 1×4 multistage switch with two stages. © 2007 Optical Society of America.
Resumo:
We propose a novel label processor which can recognize multiple spectral-amplitude-code labels using four-wave-mixing sidebands and selective optical filtering. Ten code-labels x 10 Gbps variable-length packets are transmitted over a 200 km single-hop switched network.
Resumo:
A spatial light modulator at the transmitter is used in conjunction with a standard multimode coupler at the receiver to modally multiplex 2 × 12.5 Gb/s nonreturn-to-zero channels using direct detection over 2 km of 940 MHz OM2 fiber without electronic processing. The wavelength dependence of this technique over a 4.5 THz band is also investigated. © 2012 IEEE.
Resumo:
A Mode Selective Switch based around an LCoS Spatial Light Modulator is demonstrated to optically demultiplex modes with the same propagation constants to the same output fibres, using a common phase mask for all channels. © 2012 IEEE.
Resumo:
We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.