62 resultados para stereo perception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A convenient system for the rapid extraction of three dimensional information from pairs of SEM images has been constructed, eliminating the need for time-consuming photography. Results are produced in a digestable form. Distortions inherent in the SEM record display and in the photographic system are not relevant to the system described; only those arising within the column and stage need be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human locomotion is known to be influenced by observation of another person's gait. For example, athletes often synchronize their step in long distance races. However, how interaction with a virtual runner affects the gait of a real runner has not been studied. We investigated this by creating an illusion of running behind a virtual model (VM) using a treadmill and large screen virtual environment showing a video of a VM. We looked at step synchronization between the real and virtual runner and at the role of the step frequency (SF) in the real runner's perception of VM speed. We found that subjects match VM SF when asked to match VM speed with their own (Figure 1). This indicates step synchronization may be a strategy of speed matching or speed perception. Subjects chose higher speeds when VMSF was higher (though VM was 12km/h in all videos). This effect was more pronounced when the speed estimate was rated verbally while standing still. (Figure 2). This may due to correlated physical activity affecting the perception of VM speed [Jacobs et al. 2005]; or step synchronization altering the subjects' perception of self speed [Durgin et al. 2007]. Our findings indicate that third person activity in a collaborative virtual locomotive environment can have a pronounced effect on an observer's gait activity and their perceptual judgments of the activity of others: the SF of others (virtual or real) can potentially influence one's perception of self speed and lead to changes in speed and SF. A better understanding of the underlying mechanisms would support the design of more compelling virtual trainers and may be instructive for competitive athletics in the real world. © 2009 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In stereo displays, binocular disparity creates a striking impression of depth. However, such displays present focus cues - blur and accommodation - that specify a different depth than disparity, thereby causing a conflict. This conflict causes several problems including misperception of the 3D layout, difficulty fusing binocular images, and visual fatigue. To address these problems, we developed a display that preserves the advantages of conventional stereo displays, while presenting correct or nearly correct focus cues. In our new stereo display each eye views a display through a lens that switches between four focal distances at very high rate. The switches are synchronized to the display, so focal distance and the distance being simulated on the display are consistent or nearly consistent with one another. Focus cues for points in-between the four focal planes are simulated by using a depth-weighted blending technique. We will describe the design of the new display, discuss the retinal images it forms under various conditions, and describe an experiment that illustrates the effectiveness of the display in maximizing visual performance while minimizing visual fatigue. © 2009 SPIE-IS&T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multispectral photometric stereo method for capturing geometry of deforming surfaces. A novel photometric calibration technique allows calibration of scenes containing multiple piecewise constant chromaticities. This method estimates per-pixel photometric properties, then uses a RANSAC-based approach to estimate the dominant chromaticities in the scene. A likelihood term is developed linking surface normal, image intensity and photometric properties, which allows estimating the number of chromaticities present in a scene to be framed as a model estimation problem. The Bayesian Information Criterion is applied to automatically estimate the number of chromaticities present during calibration. A two-camera stereo system provides low resolution geometry, allowing the likelihood term to be used in segmenting new images into regions of constant chromaticity. This segmentation is carried out in a Markov Random Field framework and allows the correct photometric properties to be used at each pixel to estimate a dense normal map. Results are shown on several challenging real-world sequences, demonstrating state-of-the-art results using only two cameras and three light sources. Quantitative evaluation is provided against synthetic ground truth data. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commercial far-range (>10m) infrastructure spatial data collection methods are not completely automated. They need significant amount of manual post-processing work and in some cases, the equipment costs are significant. This paper presents a method that is the first step of a stereo videogrammetric framework and holds the promise to address these issues. Under this method, video streams are initially collected from a calibrated set of two video cameras. For each pair of simultaneous video frames, visual feature points are detected and their spatial coordinates are then computed. The result, in the form of a sparse 3D point cloud, is the basis for the next steps in the framework (i.e., camera motion estimation and dense 3D reconstruction). A set of data, collected from an ongoing infrastructure project, is used to show the merits of the method. Comparison with existing tools is also shown, to indicate the performance differences of the proposed method in the level of automation and the accuracy of results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key function of the brain is to interpret noisy sensory information. To do so optimally, observers must, in many tasks, take into account knowledge of the precision with which stimuli are encoded. In an orientation change detection task, we find that encoding precision does not only depend on an experimentally controlled reliability parameter (shape), but also exhibits additional variability. In spite of variability in precision, human subjects seem to take into account precision near-optimally on a trial-to-trial and item-to-item basis. Our results offer a new conceptualization of the encoding of sensory information and highlight the brain's remarkable ability to incorporate knowledge of uncertainty during complex perceptual decision-making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a system for augmenting depth camera output using multispectral photometric stereo. The technique is demonstrated using a Kinect sensor and is able to produce geometry independently for each frame. Improved reconstruction is demonstrated using the Kinect's inbuilt RGB camera and further improvements are achieved by introducing an additional high resolution camera. As well as qualitative improvements in reconstruction a quantitative reduction in temporal noise is shown. As part of the system an approach is presented for relaxing the assumption of multispectral photometric stereo that scenes are of constant chromaticity to the assumption that scenes contain multiple piecewise constant chromaticities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psychological factors play a major role in exacerbating chronic pain. Effective self-management of pain is often hindered by inaccurate beliefs about the nature of pain which lead to a high degree of emotional reactivity. Probabilistic models of perception state that greater confidence (certainty) in beliefs increases their influence on perception and behavior. In this study, we treat confidence as a metacognitive process dissociable from the content of belief. We hypothesized that confidence is associated with anticipatory activation of areas of the pain matrix involved with top-down modulation of pain. Healthy volunteers rated their beliefs about the emotional distress that experimental pain would cause, and separately rated their level of confidence in this belief. Confidence predicted the influence of anticipation cues on experienced pain. We measured brain activity during anticipation of pain using high-density EEG and used electromagnetic tomography to determine neural substrates of this effect. Confidence correlated with activity in right anterior insula, posterior midcingulate and inferior parietal cortices during the anticipation of pain. Activity in the right anterior insula predicted a greater influence of anticipation cues on pain perception, whereas activity in right inferior parietal cortex predicted a decreased influence of anticipatory cues. The results support probabilistic models of pain perception and suggest that confidence in beliefs is an important determinant of expectancy effects on pain perception.