111 resultados para stars: fundamental parameters
Resumo:
Hydrogels are promising materials for bioengineering applications, and are good model materials for the study of hydrated biological tissues. As these materials often have a structural function, the measurement of their mechanical properties is of fundamental importance. In the present study gelatin gels reinforced with ceramic microspheres are produced and their poroviscoelastic response in spherical indentation is studied. The constitutive responses of unreinforced gels are determined using inverse finite element modeling in combination with analytical estimates of material parameters. The behavior of composite gels is assessed by both analytical and numerical homogenization. The results of the identification of the constitutive parameters of unreinforced gels show that it is possible to obtain representative poroviscoelastic parameters by spherical indentation without the need for additional mechanical tests. The agreement between experimental results on composite gelatin and the predictions from homogenization modeling show that the adopted modeling tools are capable of providing estimates of the poroviscoelastic response of particle-reinforced hydrogels.
Resumo:
An extended computational model of the circulatory system has been developed to predict blood flow in the presence of ventricular assist devices (VADs). A novel VAD, placed in the descending aorta, intended to offload the left ventricle (LV) and augment renal perfusion is being studied. For this application, a better understanding of the global hemodynamic response of the VAD, in essence an electrically driven pump, and the cardiovascular system is necessary. To meet this need, a model has been established as a nonlinear, lumped-parameter electrical analog, and simulated results under different states [healthy, congestive heart failure (CHF), and postinsertion of VAD] are presented. The systemic circulation is separated into five compartments and the descending aorta is composed of three components to accurately yield the system response of each section before and after the insertion of the VAD. Delays in valve closing time and blood inertia in the aorta were introduced to deliver a more realistic model. Pump governing equations and optimization are based on fundamental theories of turbomachines and can serve as a practical initial design point for rotary blood pumps. The model's results closely mimic established parameters for the circulatory system and confirm the feasibility of the intra-aortic VAD concept. This computational model can be linked with models of the pump motor to provide a valuable tool for innovative VAD design.
Resumo:
Negative feedback is common in biological processes and can increase a system's stability to internal and external perturbations. But at the molecular level, control loops always involve signalling steps with finite rates for random births and deaths of individual molecules. Here we show, by developing mathematical tools that merge control and information theory with physical chemistry, that seemingly mild constraints on these rates place severe limits on the ability to suppress molecular fluctuations. Specifically, the minimum standard deviation in abundances decreases with the quartic root of the number of signalling events, making it extremely expensive to increase accuracy. Our results are formulated in terms of experimental observables, and existing data show that cells use brute force when noise suppression is essential; for example, regulatory genes are transcribed tens of thousands of times per cell cycle. The theory challenges conventional beliefs about biochemical accuracy and presents an approach to the rigorous analysis of poorly characterized biological systems.
Resumo:
This paper proposes an HMM-based approach to generating emotional intonation patterns. A set of models were built to represent syllable-length intonation units. In a classification framework, the models were able to detect a sequence of intonation units from raw fundamental frequency values. Using the models in a generative framework, we were able to synthesize smooth and natural sounding pitch contours. As a case study for emotional intonation generation, Maximum Likelihood Linear Regression (MLLR) adaptation was used to transform the neutral model parameters with a small amount of happy and sad speech data. Perceptual tests showed that listeners could identify the speech with the sad intonation 80% of the time. On the other hand, listeners formed a bimodal distribution in their ability to detect the system generated happy intontation and on average listeners were able to detect happy intonation only 46% of the time. © Springer-Verlag Berlin Heidelberg 2005.